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一、中文摘要 

 

本計劃應用 Rayleigh 樑理論並包含轉
動慣量及陀螺效應的連續分佈參數模式，

來建立高速自旋主軸系統模型，並求出包

括：迴轉速度、臨界轉速及不平衡響應等

動態響應正確解析解，並將其結果應用於

最佳振動控制器設計上。然因受限於控制

器的階數不能太高，系統必須做適度的降

階，不過所忽略的殘餘模態若無經過適度

的處理，將會產生溢出不穩定性。本計劃

可針對殘餘模態所產生之溢出不穩定問題

加入穩定性探討，以確保本計劃所發展的

最佳控制器設計，不僅能確保系統之絕對

穩定性，並同時能達到最佳減振效果。 
 

關鍵詞：臨界轉速、共振模態、溢出穩定

性、最佳控制器設計 

 

Abstract 
 

It has been shown that a spinning shaft 
has only finite number of critical speeds and 
the precessional modes when the whirl ratio 

2/1>λ . The system's unbalanced response 
can therefore be expressed by the finite 
precessional modes and the corresponding 

generalized coordinates. This project presents 
a spillover stabilizable controller design for 
optimal sensor/actuator location and 
feedback gain such that the steady state 
unbalanced response can be minimized. 
Under controller order constraint when only 
part of the precessional modes are included 
in the controller design, the spillover from 
the remaining residual modes can be 
evaluated for system stability.  

 
Keywords: critical speeds, precessional 

modes, spillover stabilization, 
optimal controller design  

 
二、緣由與目的 

 

One of the major challenges in 
structural control is to apply successfully and 
confidently the control law derived from a 
reduced-order model to the engineering 
system of much higher order. Structural 
control systems usually require a large 
number of vibration modes to describe its 
dynamics, but the controller is implemented 
only for a few vibration modes, often termed 
primary modes. It is known that spillover— 
the observation spillover that entails the 
contamination of sensor output through the 
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presence of residual mode dynamics and the 
control spillover in which the residual modes 
are excited by feedback control—are inherent 
in controller design of reduced-order model. 

A recent analytical study (Yang and 
Sheu, 1999) showed that the unbalanced 
response of a spinning shaft can be written 
analytically by a finite number of 
precessional modes and the corresponding 
generalized coordinates when 2/1>λ . 
Because the number of critical speeds and the 
precessional modes are finite, all can be 
included in the controller design. Spillover 
instability due to residual modes often seen 
in vibration control of flexible systems can 
then be prevented. However, the controller 
based on a full order model may often be 
difficult, if not impossible, to realize in 
practice. This project aims at evaluating the 
spillover, if any, of a system under controller 
order constraint where only part of the 
precessional modes within a desired 
operation range can be considered.  The 
design of a spillover stabilizable controller is 
necessary such that the steady state 
unbalanced response within the operation 
range can be minimized.  

 

三、結果與討論 

   
Consider of a spinning circular shaft 

modeled by a Rayleigh beam with rotary 
inertia and gyroscopic effects as shown in 
Fig. 1.The EOM of a spinning shaft under 
control input can be rewritten analytically in 
a matrix form by 
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where the generalized matrices [M], [D], and 
[K] are the diagonal, symmetric, positive 
definite mass, damping, and stiffness 
matrices with dimension crcr nn × , 
respectively. [G] is the gyroscopic matrix of 
same dimension. )]([ aB ζ  is the control 
influence matrix, {f(τ)} is the control input 
vector, and {N(τ)} is the unbalanced force 
vector. 

For a spinning shaft under velocity 
feedback as the control force to suppress the 

unbalanced vibration with r-measurement at 
sζ , the control input becomes 
 

)}()]{(][[)}({ τζτ qCgf s &−=      (2)     
 

where )]([ sC ζ  is the sensor distribution 
matrix, 
 

rmnj crsmj ,,1 and ,,1 )],([)]([ ΚΚ === ζφζ sC              
(3) 

and [g] is an rn ×  constant gain matrix. 
Therefore, the closed loop system becomes 
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In the case of noncollocated sensor/actuator, 
)]([ aB ζ  and )]([ sC ζ  may not necessarily 

be in the same column space so that the 
closed loop system is no longer guaranteed 
stable. The control-induced damping matrix 
can then be written into a symmetric matrix 
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                                  (5) 
and a skew symmetric matrix 
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                                  (6) 
that represent the damping and the 
gyroscopic effect from feedback, respectively. 
The closed loop system becomes 
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By the generalized Kelvin-Tait-Chetaev 
theorem (Yang, 1993), the system is 
asymptotically stable if ])[]([ cDD +  is 
positive definite, independent of [G] or [Gc]. 

The steady state unbalanced response 
U(ζ, τ) can be obtained explicitly as 
 

,e )()}({)]([) ,( )( θ−τΩζ=ζζΦ=τζ iT UU q  (8)  
 
where )(ζU  is the vibration amplitude, and 
θ is the phase lag induced by feedback 
control.  The controller design is to 
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determine the optimal sensor location sζ , 
actuator location aζ , and feedback gain [g] 
such that the steady state unbalanced 
vibration can be minimized. 

The measure of vibration suppression 
performance can be evaluated by the 
integrating the steady state vibration 
amplitude )(ζU  over the shaft length 

ζζ=ζζΩ ∫ dUW
21

0

 

 
)( ])[ , , ,( gas     (9) 

 
The performance index depends on the 
spinning speed (Ω), the location of 
sensor/actuator ( sζ , aζ ), and the feedback 
gain ([g]).  For a given spinning speed, the 
optimal sensor/actuator location ),( ∗∗ ζζ as   
and feedback gain ])([ ∗g  can be obtained 
by the optimization problem 
 
      ]),[ , , ,(min

][,,
gasgas

ζζΩ
ζζ

 W       (10) 
 
subject to the constraints 
(1)  stability criteria   ([ ] +[D Dc ]) ,> 0  
(2)  admissible region   0   0  ≤ ≤ ≤ ≤ζ ζs a1 1, ,  
(3)  saturation limit   0 1.   ≤ ≤gij  

 
The optimal sensor/actuator location 

will change with the spinning speed because 
of the change of the anti-node(s) location. 
The above optimal control for a spinning 
shaft is developed for either a part or a full 
order model where the fisrt or all critical 
speeds and precassional modes are included 
in the controller design. The precessional 
modes employed in the in the reduced model 
for the controller design are termed the 
primary modes and the truncated modes are 
termed residual modes. If only part of the 
precessional modes within a desired 
operation range are included in the controller 
design, then the spillover effects of residual 
modes will have to be evaluated. Equation (7) 
can be decomposed into 
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where the subscripts p and r refer to the 
primary and residual mode, respectively. The 
number of primary and residual modes are 

pn and rn  satisfying crrp nnn =+ . The 
controller design is based on Eq. (11) of 
reduced-order model in terms of primary 
modes, but it is to be implemented on the full 
order system with residual modes as well.  
In such case, the constraint in Eq. (10) has to 
be modified by 
 
  ([ ] [ ]) ,* *D Dc+ > 0     stability criteria   (13) 

 
where 
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   (14) 
represents the control-induced damping 
matrix for the full-order closed loop system 
must be semi-definite. 
 

Consider a spinning shaft of slenderness 
ratio l = 7 with linear eccentricity distribution 

)1()( 0 ζ+ε=ζε , and the boundary condition 
is hinged-hinged. There will be only four 
critical speeds )4( =crn  at 13.10=Ωcr  , 
44.18, 120.12 and 358.23 with the 
corresponding precessional modes 

)(ζφn = )sin( πζn , 4,,1= Κn . For systems 
with damping ratio %1.021 =ξ=ξ , the 
amplitude response {q(τ)) are plotted in Fig. 
2. The objective of controller design is to 
place one pair of sensor/actuator in optimal 
location ( sζ , aζ ) with a feedback gain (g) 
such that the vibration amplitude can be 
minimized.  

If subject to controller order and desired 
operation range restrictions, only the first two 
precessional modes is considered in the 
controller design pn  = 2 At the same time, 
however, the design should prevent the 
spillover of the remaining modes and 
guarantee stability. For systems in 
noncollocated sensor/actuator configuration, 
the optimal sensor location sζ , actuator 
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location aζ , and feedback gain (g) are 
shown in Fig. 3. The first mode is dominant 
at lower speed, so that the optimal 
sensor/actuator locations become collocated 
instead, and they are at the anti-node 

.5.0=ζ=ζ as When the spinning 
speed Ω Ω> cr1 , the magnitude of q1 
approaches a constant while the influence of 
q2 becoming more apparent as shown in Fig. 
2. Thus the sensor and actuator locations 
become noncollocated and they bifurcate into 
two branches.  Their relative distance is 
determined by the control-induced 
gyroscopic effect in Eq. (6).  The farther 
apart the sensor and actuator, the more 
gyroscopic effect induced.  But it is also 
restricted by the stability constraint in Eq. 
(13). That is why they are kept at a constant 
distance in order to guarantee stability as 
shown in Fig. 3. 

Figure 4 shows the optimal sensor/actuator 
locations ( , )ζ ζs a  and the feedback gain in 
noncollocated design when all the 
precessional modes are included ( )np = 4 . 
The unbalanced responses of the optimal 
design under noncollocated configurations 
from reduced ( )np = 2  and full order 
controller )4( =pn and are compared in Fig. 
5. The reduced-order controller is effective 
for the first two modes, but it is less effective 
to for vibration suppression of the residual 
modes because only the precessional modes 
within the operation range are considered in 
the design. Nevertheless, the system remains 
stable. 
 

四、計畫成果自評 

 

It has been shown that a spinning shaft 
only has finite number of critical speeds and 
precessional modes when the whirl ratio 

2/1>λ .  Vibration control of steady state 
unbalanced response by optimal 
sensor/actuator location and feedback gain 
are studied analytically in this project. Due to 
controller order constraint, one can include 
part of precessional modes in the controller 
design and then guarantee the spillover 
stabilization, if any, of the remaining residual 
modes. 

In noncollocated configuration, the 
optimal sensor and actuator locations are 
affected not only by the spinning speed but 
also by the control-induced gyroscopic effect.  
When operating near one of the critical 
speeds, the optimal locations become 
collocated at the anti-node of that critical 
mode.  At the other speeds, the optimal 
locations are, as expected, noncollocated, and 
they are kept at a constant distance to ensure 
system stability.  The actuator location is 
more sensitive than the sensor location to 
spinning speed and hence to system 
performance. Under stability constraint, the 
sensor and actuator locations are placed in a 
way such that they remain in-phase and the 
control input is always constructive for 
vibration suppression. 
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Fig. 1 Schematic diagram of a spinning shaft 
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Fig. 2 Amplitude of the generalized 
unbalanced response {q(τ)) 
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Fig. 4 Optimal sensor/actuator locations 

( , )ζ ζs a  and the feedback gain in 
noncollocated design when 2=pn . 
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Fig. 5 Optimal sensor/actuator locations 
( , )ζ ζs a  and the feedback gain in 
noncollocated design when 4=pn . 
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Fig. 6 Unbalanced response of the optimal 
noncollocated design from reduced 
( )np = 2  and full order controller 

)4( =pn . 
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