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摘要 

利用人工智能的協助提供正確的預測作蛋白質的分類工作，使得生物學家可

以縮短實驗的時間。於是，如何提供正確的預測，變成了一個重要的課題。 

在這個研究中，我們基於我們先前的研究，並把 SVM 結合 ECOC，嘗試找出

一個更有效的分類法則，以便對蛋白質的結構分類作預測。 

ECOC SVM 法則將用來解決多類分類器的問題，它可以將問題化為一群二值

的問題，並結合這些結果作修正來預測多類的問題。首先 ECOC SVM 將會指定一

組長度為 n 的二元碼，並進行訓練，利用梯度的方法決定了最適合的 SVM 核心

的參數，並形成了一組獨立的二元 SVM 分類器。接著在測試階段，將利用一組沒

有標記的資料，評估每一個二元分類器的輸出以得到 ECOC 矩陣中最接近的向量。 

　  我們利用 ECOCSVM 的方法，結合我們先前提出的階層式學習架構，對 SCOP

中蛋白質分類作預測的驗證。實驗結果顯示可以得到良好的準確度，若要得到更

好的準確度，則可以利用不同長度的碼元以得到更好的分類器。 

  

關鍵字：支持向量機、輸出錯誤校正碼、階層式學習架構、SCOP、生物資訊、 

蛋白質 
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Abstract 

The artificial intelligence aid classification of proteins helps bio-researchers to 

shorten their experiments, for the prediction can exclusive those wrong answers. But 

how to separate the right and the wrong properly becomes an important task.  

In this work, we based on our prior researches and combine SVM with ECOC to 

develop an efficient classifier and apply to the classification of proteins structure. 

The ECOC SVM is an approach for solving multi-class classification problem by 

reducing it into a group of binary classification tasks and combines the binary 

classification results to predict the multi-class target labels. First, the ECOC SVM 

assigns a unique binary string of length n, called ‘codeword’, for every class to 

distinguish each other. Then, the n binary classifiers are trained, one for each bit 

position in the codeword. To improve the performance of each binary classifier, a 

gradient descent method is used to determine the better penalty parameters and kernel 

parameters of SVM adaptively. After the training phase, a set of independent binary 

SVM classifiers, with their parameters, are constructed automatically.  In the testing 

phase, the unlabeled data are predicted by evaluating each output result of each binary 

classifier and finding the closest vector in the ECOC matrix.  

We apply the ECOCSVM to the protein fold classification problem in SCOP 

with HLA, which has proposed by us. Experimental results show that the proposed 

scheme can achieve good classification accuracy. To further enhance the overall 

accuracy, different codeword of different length are also applied to analyze the 

classification performance and to obtain better results.   

 

Key Words: SVM, ECOC, HLA, SCOP, bioinformatics, protein 
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1. Introduction 

It is known that proteins are formed by 20 kinds of amino acid but the functions 

are truly decided by the structures of proteins. The sequences of amino acid are called 

the first structure of proteins, and the basic forms of proteins are called second 

structure of proteins. There are three basic forms of second structure of proteins, 

named helix, sheet and plate. 

Since the three-dimensional coordinate structures provide insight into the 

function, mechanism and evolution of protein, there are several famous classification 

databases existed such as SCOP, CATH, DDBASE, Entrez, and 3Dee, which imbue 

the structures with context and analysis. These different classification databases of 

proteins focus on their own characteristics. For example, SCOP provides a detailed 

description of the structural and evolutionary relationships of the proteins of known 

structure. Recently, protein classification and protein fold prediction have been solved 

by the aid of computer with the strong ability of computation [1, 2, 3]. Computational 

methods have been developed for the assignment of a protein sequence to a folding 

class in the SCOP also. 

In the prior researches, we proposed a hierarchical learning architecture (HLA) 

to solve the problems of classification. And we have found that researchers have used 

primary global protein sequence in terms of three descriptors as physical, chemical, 

and structural properties of the constituent amino acids to code the sequences, Table 1. 

In addition to the aforementioned traditional global features, other local features 

describing the chain of amino acids representing proteins called the bi-gram and 

spaced-bi-gram are also used in feature coding also proposed and used in  our 

experiments. [ 4 ]. Machine learning methods such as Neural Network and Support 

Vector Machine have been induced into this complex classification problem.[1,2,4,6] 
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Table 1. The descriptors and feature dimension sizes of each of the six protein attributes 

(protein sequence information --- PSI). 

2020 kinds of am ino acidsC om position (C )

W eak
N egative

Sm all
N egative

L oop

M iddle
N eural
M iddle
N eural 

B eta

125T otal N um ber 
21StrongPolarizability (Z)
21PositivePolarity  (P)
21L argeV olum e (V )
21PositiveH ydrophobicity (H )

21A lphaPredicted Secondary  
Structure (S)

Feature SizeD escrip torsC haracteristics
2020 kinds of am ino acidsC om position (C )

W eak
N egative

Sm all
N egative

L oop

M iddle
N eural
M iddle
N eural 

B eta

125T otal N um ber 
21StrongPolarizability (Z)
21PositivePolarity  (P)
21L argeV olum e (V )
21PositiveH ydrophobicity (H )

21A lphaPredicted Secondary  
Structure (S)

Feature SizeD escrip torsC haracteristics

 

Support Vector Machine (SVM) is a discriminative method based on the 

statistical learning theory and has been widely used in many applications including 

the complex problems of bioinformatics [1,2,5,6]. In this research, a different 

multi-class support vector machine algorithm, called self-tuning error correcting 

output coding (ECOC) SVM is proposed to deal with the multi-class protein fold 

classification problem. The ECOC SVM is an approach for solving multi-class 

classification problem by reducing it into a group of binary classification tasks and 

combines the binary classification results to predict the multi-class target labels.  

 

2. Proteins, Protein databank 

Structure Classification of Protein (SCOP) is a famous protein databank, which 

uses the evolution and similarity of proteins to classify the structure of proteins. The 

data structure of SCOP is found according to the hierarchical structure of proteins. In 

the SCOP, the main classes are divided into several classes. The main classes, with 

most numbers of protein, are all alpha(α), all beta(β), alpha/beta (α/β) and alpha 

and beta (α+β). These four classes are named by the structure of proteins [7, 8, 9, 

10]. The protein classification in SCOP was performed manually or 

semi-automatically, which takes a great amount of time for such a complex task.  
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2.1 Training Dataset in Experiments 

This training dataset was built for the prediction of protein folds based on the PDB 

selected sets. The data set was selected by their characteristics so that all proteins in the 

data set have less than 35% of the sequence identity for the aligned subsequences 

longer than 80 residues. Following the prior published papers [4, 5, 6, 8], the training 

data number is 313 and they should be divided into 4 classes with 27 folds according to 

their structures representing all major structural classes. 

2.2 Testing Dataset in Experiments 

The testing dataset was based on PDB-40D set developed by the authors of the 

SCOP database [7,8,9,10]. A total number of 385 proteins with identity less than 40%, 

same as the prior used, were selected for testing in our research. .Table 2 shows the 

numbers of proteins in the training and testing datasets for different protein classes used 

in our experiments. Table 3 shows the numbers of proteins in the training and testing 

datasets for different folds of each protein class used in our experiments, where there 

are 27 folds for the 4 classes in total. 

Table 2. Pattern numbers of each classes in SCOP which was picked up to be training  

       and testing patterns in this study. 
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Table 3. Fold numbers of each class and pattern numbers of each fold in SCOP which 

was picked up to be training and testing patterns in this study. 
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3. SVM, Support Vector Machines 

Support Vector Machine (SVM) is a typical two-class classifier and a kind of 

universal feedforward network. The SVM will construct a hyperplane in a 

high-dimensional features space as the decision surface between positive and negative 

patterns. The structural risk minimization ability makes the SVM a very efficient 

classifier in various applications including biosequences analysis also [11,12,13,14].  

With the further improvements by other researchers recently, the SVM has the 

ability to do multi-class classification directly, which is the model adopted here in our 

HLA as the constituent multi-class classifiers. [15]  

Given the training set S = {(x1, y1), (x2, y2), …, (xl, yl)} with explanatory 

variables d
i ∈x R  and the corresponding binary class labels { 1, 1}iy ∈ − + , for all 

1, ,i l= , where l is the number of data, and d is the dimension of the problem, we 

wish to find a separating d-dimensional hyperplane described by 

 0 =0b⋅ +w x , (1) 

where 1 2[ , , , ]lw w w=w  is the set of linear weights,  

1 2[ , , , ]l=x x x x  is the input dataset, and  

b0 is the constant.  

The separation problem is to determine the hyperplane such that 0 1b⋅ + ≥ +w x  for 

positive examples and 0 1b⋅ + ≤ −w x  for negative examples. If it is separated 

without error and the distance between the closest vector to the hyperplane is maximal, 

this set of vectors is separated by the optimal hyperplane. In this connection, the SVM 

is used to find a hyperplane to maximize the function M as follow:   

 
2M

W
= . (2) 

The solution of Eq. (2) must satisfy the following constraints of inequality type 
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 ( ) 0 1i iy b⋅ + ≥⎡ ⎤⎣ ⎦x w      1, 2........,i l= . (3) 

This is a classic nonlinear optimization problem with inequality constraints. Such an 

optimization problem can be solved by the saddle point of the Lagrange function 

 { }0
1

1( , , ) 1
2

l
T T

i i i
i

L b y bα α
=

⎡ ⎤= − + −⎣ ⎦∑w w w w x , (4) 

whereαi’s are Lagrange multipliers.  

The Lagrangian has to be minimized with respect to w and b and maximized with 

respect toαi>0. 

Through mathematics reasoning and calculation, one obtains a standard quadratic 

optimization problem that can be formulated as follows: 

 
1 , 1

1Maximize    ( )
2

l l
T

d i i j i j i j
i i j

L y y x xα α αα
= =

= −∑ ∑  

 or  1Maximize     ( )
2

T T
dL H fα α α α= − +  

subject to  0iα ≥ ,  i = 1, 2,…., l  and   
1

0
l

i i
i

yα
=

=∑ . (5) 

Let ( )0 0 0
0 1 2, ,..... lα α α α=  be a solution to this quadratic optimization problem. The 

separating rule is the following indicator function  

 0
0

1
( ) sign ( )

svN

i i i
i

f y bα
=

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑x x x , (6) 

where Nsv denotes the number of support vectors, xi are the support vectors, 0
iα  are 

the corresponding Lagrange coefficients, and b0 is the constant given by 

 ( ) ( )* *
0 0 0

1 (1) ( 1)
2

b ⎡ ⎤= ⋅ + ⋅ −⎣ ⎦w x w x , (7) 

where we denote by x*(1) any support vector belonging to the first class and x*(-1) a 

support vector belonging to the second class. 
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In practical applications for real-life data, the two classes are not completely 

separable and the separating plane is always a nonlinear function of the data. So the 

idea of feature space is discovered to solve this problem. The idea in designing a 

nonlinear SVM is to map an input vector d∈x R  into a vector z of a 

higher-dimensional feature space F ( ( )φ=z x , where φ  represents a mapping 

d f→R R ), and to solve a linear classification problem in this feature space: 

      1 1 2 2( ) [ ( ), ( ), , ( )]d T f
n nR z a a a Rφ φ φ∈ → = ∈x x x x x , 

where na  is constant. Since the computation of the dot products is prohibitive if the 

dimension of transformed training vectors ( )iφ x  is very large, and since ( )iφ x  is 

not known a priori, the Mercer’s theorem for positive definite functions allows to 

replace ( ) ( )i jφ φ⋅x x  by a positive definite symmetric kernel function ( , )i jk x x , i.e., 

( , ) ( ) ( )i j i jk φ φ= ⋅x x x x . So we need to select a kernel function and then solve the 

following dual quadratic optimization in order to obtain an optimal hyperplane for any 

linear or nonlinear space: 

 max
α

  ( ) ( )1 ,
2dL y y Kα α α α= −∑ ∑ x x

l l

i i j i j i j
i=1 i, j=1

 

 subject to  0 ,  1,2,...,C i lα≤ ≤ =i  and 0yα =∑
l

i i
i =1

. (8) 

The indicator function is   

 0
0

1
( ) sign ( )

svN

i i i
i

f y k bα Θ
=

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑x x x , (9)  

where a kernel kΘ  depends on a set of parameters Θ . 

4. Error-Correcting Output Coding (ECOC) 
Error-correcting output coding (ECOC) is an approach for solving multi-class 

categorization problems [16]. It reduces the multi-class classification problem to a 
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group of binary classification tasks and combines the binary classification results to 

predict multi-class labels.  

In supervised classification problems, one is given a training set S={(x1, y1), (x2, 

y2), …, (xn, yn)} ∈Χ , containing n examples. Each sample (x, y) consists of an 

instance ∈Χx  and a label { }1, 2, ,y k∈ , where Χ  is the instant space and 

2k ≥  is the number of classes. A classifier is a mapping { }: 1, 2, ,F X K→  

from instances to labels. In the ECOC method, a m l×  binary code word matrix M 

(where 2logl k> ) has one row (code word) for each of k classes, with each column 

defining one of l sub-problems that use a different labeling. The binary code of error 

correcting output code is shown in Fig. 1. Specifically, for the jth (j = 1, 2, ..., l) 

sub-problem, a training pattern with target class ( )1, 2, ,iC i k=  is re-labeled 

as class C1 if Mij = b, and as class C2 if Mij = b , where b is a binary variable, 

typically zero or one. The re-labeling is to consider the k classes as being arranged 

into two super-classes. 

Next, the ECOC classifier will build an individual binary classifier for each 

column of the code word matrix. To summarize, in the training phase, an ECOC 

classifier consists of learning a set { }1 2, , , nϑ ϑ ϑ ϑ=  of independent binary 

classifiers. Then, in the testing phase, the correct class of an unlabeled xh is 

hypothesized as follows. First evaluate each independent classifier on xh, and then 

generate a n-bit vector { }1 2( ) ( ), ( ), , ( )nϑ ϑ ϑ ϑ=h h h hx x x x . The generated 

bit-vector ( )ϑ hx  which is closest to the row of M according to some distance will be 

found. Either Hamming distance ∆  or loss-based decoding can be used here.  

The performance of the ECOC SVM classifier has been shown to superior to 
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other multi-class SVM classifiers. However, it will be affected by some factors such 

as performance of the composing binary classifiers, independence of the binary 

classifiers, and the loss function. In the next section, an ECOC SVM classifier will be 

proposed to improve the classification accuracy and design efficiency of the ECOC 

classifier. 

 
Classes Code words (each column for one binary)   

0 -1 -1 -1 -1  +1 
1 -1 +1 -1 +1  -1 

2 +1 -1 +1 -1  +1 

3 -1 -1 +1 -1  -1 

       
m -1 +1 -1 -1  -1 

 

Fig. 1. Error Correcting Output Code matrix, where m is the number of classes (rows) 

      and l is the number of classifiers (columns). 
 

5. The ECOCSVM Classifier 
Since the accuracy of an ECOC SVM classifier is highly affected by the 

performance of its composing binary classifiers, the performance of a binary SVM 

classifier is determined by several parameters such as the penalty parameter C and 

kernel parameters. The penalty parameter C controls the tradeoff between margin 

maximization and error minimization. The kernel parameters determine the proper 

and efficient non-linear mapping from pattern space into feature space. We find out 

that the best penalty parameter C and kernel parameters to make every binary SVM 

classifier have the best classification function so that the classification mistakes can 

be eliminated. Besides, the accuracy of the whole ECOC SVM classifier can be 

increased globally. 
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There are many researchers have proposed different methods to improve the 

problem of kernel model selection [16,17]. We adopt the efficient on-line processing 

of the gradient descent method to improve the performance of ECOC SVM here, for 

its efficient. In the SVM methodology, a kernel function which depends on one or 

several parameters can be encoded into a vector 

  1 2( , , , )nθ θ θΘ =  . (10) 

Based on the chosen kernel functions, a class of decision functions can be 

parameterized by , , andbα Θ  as follows: 

 , , 0
1

( ) sign( ( ) )
l

b i i i
i

f y k bα αΘ Θ
=

= +∑x x, x . (11) 

In addition, there is a penalty parameter C that controls the tradeoff between margin 

maximization and error minimization as mention above. In our approach, the penalty 

parameter C as another tunable parameter of kernel functions is considered first. 

Because the “soft margin” concept proposed [18, 19,20], in which it was shown that 

the soft-margin SVM with quadratic penalization of errors can be considered as a 

special case of the hard-margin version with the modified kernel: 

         1
C

← +K K I , (12) 

where I is the identity matrix and C a constant for penalizing the training errors. Thus 

C will be considered as another tunable parameter of a kernel function. 

To obtain a proper value of the penalty parameter C and a proper 

kernel-parameter vector, we first consider the estimation of the generalization error E 

of the SVM. In pattern classification area, there are several measures of the expected 

error rate of an SVM. Among these, the single validation error estimate and 

leave-one-out error estimate are used mostly. Then, we adopt the single validation 

estimation method to estimate the generalization error of the SVM in our approach. 
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This estimate is given as follows: 

           
1

1 ( ( ))
N

i i
i

E y f
N =

= Ψ −∑ x , (13) 

where Ψ  is the step function:Ψ (x) = 1 when x > 0 and Ψ (x) = 0, otherwise; and N 

is the size of the data set.  

The goal is to find the values of the parameters α  and Θ  such that margin M is 

maximized and the generalization error E is minimized. With the parameter Θ  fixed, 

we can obtain 0 arg max ( )Wα α=  and then choose Θ  as 

        arg min ( , )E α
Θ

Θ = Θ . (14) 

Because the step function Ψ  is not differentiable, we cannot use a gradient 

descent method to minimize the estimates of generalization errors. To circumvent this 

problem, Platt proposed the following estimate of the posterior distribution 

( 1 )P Y X= = x  of an SVM output: 

       1( 1 )
1 exp( ) )

P Y X
Af B

= = =
+ +

x
(x

, (15) 

where ( )f x  is the output of the SVM. The constants A and B in the above equation 

are found by minimizing the Kullback-Leibler divergence between P and an empirical 

approximation of P built from a training set S={(x1, y1), (x2, y2), …, (xn, yn)} ∈ X, 

containing n examples: 

        * *

, 1

1 1( , ) arg max ( log( ( )) log(1 ( ))
2 2

n
i i

i iA B i

y yA B p p
=

+ −
= × + × −∑ x x . (16) 

The error probability of either target value for a given data example ix is formulated by  

             1( ) (1 )i it t
i i i i iE p y z p p−= ≠ = − , (17) 

where ( )i i iz f f x= =  is the corresponding SVM output value, ip  is the estimated 

posterior probability, and it  is that 1it =  if the input vector ix  belongs to class 
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1C and 0it =  if it belongs to class 2C . For a validation set of size N, the average 

estimate of the error could be written as: 

   1

1 1

1 1 (1 )i i

N N
t t

i i i
i i

E E p p
N N

−

= =

= = −∑ ∑ . (18) 

So the gradient of the generalization error E can be computed as follows [26] 

  
fixedr r r

E E E

α

α
θ θ α θ
∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

, (19) 

where rθ  is the number in the vector Θ , and r = 1, 2, , n. The components E
α
∂
∂

 

can be computed as follow  

          
1

1 N
i i i

i i i

E p fE
N p fα α=

∂ ∂ ∂∂
=

∂ ∂ ∂ ∂∑  (20) 

and  

          1 1(1 ) (1 )(1 )i i i it t t ti
i i i i i i

i

E p t p t p p
p

− − −∂
= − − + − −

∂
 (21) 

          ( )2 iAf Bi
i

i

p Ap e
f

+∂
= −

∂
 (22) 

         ( ),i
i j i

f y K
α Θ

∂
=

∂
x x , (23) 

where 1iy = ±  is the bipolar target of example ix . Notice that we can include the SVM 

bias b in the vector α  as 1 2( , , , , )k bα α α α= . Then, it can be shown that  

    1 T

r r

α α
θ θ

−∂ ∂
= −

∂ ∂
HH , (24) 

where 
0

Y

T

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

K Y
H

Y
 with the components ( ),Y

ij i j i jy y K=K x x , where vector Y is 

the target vector corresponding to the support vectors set, and TY is the transpose 

matrix of the matrix Y. So we can update the parameters rθ  such that E is minimized 
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by the gradient descent method 

    ( , )r
r

r

E α θθ ε
θ

∂
∆ = −

∂
, (25) 

where ε  is the amplitude of the step along the search direction.  

 

6. The measurement of Accuracy 

In our HLA classification approach, such confusing conditions will not happen. 

Therefore, the accuracy measurement in our experiments is quite clear and simple. Let 

us use a function A (accuracy) to indicate the classification correctness of a protein 

pattern fed into the HLA. Then the total number of correctly classified proteins can be 

expressed as: 

                
( 2 | 1)
( 2) ( 1 2)

O A level level
A level A level level

=
= ∩

                         (26) 

where A is a conditional function whose value is 1 only when a protein pattern is 

correctly classified by the classifiers in both Level 1 and Level 2 of the HLA, and is 0.  

Based on the above concepts, the accuracy measurement of the proposed approach 

is defined as follows. If the number of testing proteins belonging to the th
iF  fold is in , 

but the tested classifier only recognizes io  proteins as the th
iF fold, then the accuracy 

rate of this tested classifier is set as i

i

o
n

 for the th
iF fold. The total classification 

accuracy can be briefly calculated as follows. 

      1 2 3
1

... i i
i

N n n n n n
=

= + + + + =∑   (in this case, i=27, N=385)            (27) 

     1 2 3
1

... i i
i

O o o o o o
=

= + + + + =∑    (in this case, i=27)                   (28) 

         OQ
N

=                                                     (29) 

where N is the total number of testing proteins data, O is the total number of correctly 

classified proteins in Eq. (26), and Q is the classification (prediction) accuracy. 
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7. Experimental Results 

To demonstrate the proposed techniques for multi-class protein fold classification, 

several experiments are performed and the results are illustrated. The experiment 

datasets are based on the protein database, SCOP, introduced in above section. The 

proposed ECOC SVMs with different codeword length are trained and test based on 

these datasets. All the data are summarized in Table 4 ~ Table 6 and the previous results 

are also listed in Table7 ~ Table 8. 

 

Table 4. Protein-fold classification accuracy of various single-level classification 

approaches, where the input PSIs fed into the classifier are C+S+H+P+V+Z. 

5 1 . 44 9 . 44 4 . 24 8 . 8Q ( C + S + H + P + V + Z )   ( % )

S V MR B F NG R N NM L PC l a s s i f i e r
A c c u r a c y

5 1 . 44 9 . 44 4 . 24 8 . 8Q ( C + S + H + P + V + Z )   ( % )

S V MR B F NG R N NM L PC l a s s i f i e r
A c c u r a c y

 

Table 5. Protein-fold classification accuracy comparisons of the proposed HLA and 

the existing approaches, where “OvO” standing for the one-versus-others 

method, “uOvO” for the unique one-versus-others method, and “AvA” for the 

all-versus-all method. 

C C+S C+S+H C+S+H+P C+S+H+P+V C+S+H+P+V+Z

(%) (%) (%) (%) (%) (%)
OvO    (NN)* 20.5 36.8 40.6 41.1 41.2 41.8
OvO  (SVM)* 43.5 43.2 45.2 43.2 44.8 44.9
uOvO (SVM)* 49.4 48.6 51.1 49.4 50.9 49.6
AvA  (SVM)* 44.9 52.1 56 56.5 55.5 53.9
RBFN
(Single-stage)*
HLA   (MLP) 32.7 48.6 47.5 43.2 43.6 44.7
HLA   (RBFN) 44.9 53.8 53.3 54.3 55.3 56.4
HLA  (GRNN) ----- ---- ---- ---- ---- 45.2
HLA   (SVM) ----- ---- ---- ---- ---- 53.2
HLA (ECOC) 54.81 54.01 55.06 53.25 54.81 56.1

52 49.1 49.4

          PSI

40.3 48.6 50.1

 

Note:  * Data from the paper (Dubchak et al., 2001[5] ). 

** Using RBFN directly to classify the proteins into 27 folds (i.e., single-level approach). 
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In Table 4, the single-layer approach is used to directly classify each test input 

vector into 27 folds. It can be seen that the performance of proposed method can have 

good accuracy when compared to other methods.  

 

Table 6. Classification accuracies of the ECOC-SVM-based HLA with various 

combinations of global features (C+H+S+P+V+Z) and local features 

(bi-gram coded feature (B) and spaced bi-gram coded feature (SB)). 

    ECOC-Based HLA     
Features Global features(6PSI) PSIs+B PSIs+B+SB 

No. of Features   125 125+441 125+441+441
Accuracy of Level 1   80.26 83.38 84.94 

Group 1 70.49 78.69 83.61 
Group2 54.7 66.67 71.79 
Group 3 40.32 50 56.45 

Accuracy of Level 2 

Group 4 38.71 50 56.45 
Overall Accuracy(%) 56.1 65.45 68.57 

 

Table 7. Classification accuracies of the RBFN-based HLA with various combinations 

of global features (C+H+S+P+V+Z) and local features (bi-gram coded 

feature (B) and spaced bi-gram coded feature (SB)). 

8 3 .68 3 .17 9 .28 1 .6A cc u ra c y  o f L e v e l 1

6 9 .06 2 .86 0 .05 8 .6C la s s  3
C la s s  4

C la s s  2
C la s s  1

5 6 .4
4 8 .4

5 2 .1
6 7 .2

1 2 5

G lo b a l 
fe a tu re s
(6  P S Is )

5 8 .2
5 6 .5

5 6 .4
5 9 .0

4 4 1

L o c a l 
fe a tu re  B

6 3 .7
5 4 .8

6 2 .4
7 7 .0

1 2 5 + 4 4 1

P S Is +  B

6 5 .5
5 3 .2

6 3 .2
7 3 .8

1 2 5 + 4 4 1 + 4 4 1

P S Is +  B  +  S B

O v e ra ll A c cu ra c y  (% )

A cc u ra c y  o f 
L e ve l 2  (% )

N o . o f F e a tu re s

F e a tu re s

R B F N -B a s e d  H L A
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C la s s  1

5 6 .4
4 8 .4

5 2 .1
6 7 .2

1 2 5

G lo b a l 
fe a tu re s
(6  P S Is )

5 8 .2
5 6 .5

5 6 .4
5 9 .0

4 4 1

L o c a l 
fe a tu re  B

6 3 .7
5 4 .8

6 2 .4
7 7 .0

1 2 5 + 4 4 1

P S Is +  B

6 5 .5
5 3 .2

6 3 .2
7 3 .8

1 2 5 + 4 4 1 + 4 4 1

P S Is +  B  +  S B

O v e ra ll A c cu ra c y  (% )

A cc u ra c y  o f 
L e ve l 2  (% )

N o . o f F e a tu re s

F e a tu re s

R B F N -B a s e d  H L A
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Table 8. Classification accuracies of the SVM-based HLA with various combinations 

of global features (C+H+S+P+V+Z) and local features (bi-gram coded 

feature (B) and spaced bi-gram coded feature (SB)). 

84.483.477.981.3Accuracy of Level 1

65.564.860.056.6C lass 3
C lass 4

C lass 2
C lass 1

53.2
45.2

49.6
60.7

125

G lobal 
features
(6 PSIs)

57.7
59.7

53.8
57.4

441

Local 
feature B

62.3
52.6

59.0
73.8

125+441

PSIs + B

64.2
58.1

60.7
73.8

125+441+441

PSIs + B  + SB

O verall Accuracy (% )

Accuracy of 
Level 2 (% )

No. of Features

Features

SVM -Based HLA

84.483.477.981.3Accuracy of Level 1

65.564.860.056.6C lass 3
C lass 4

C lass 2
C lass 1

53.2
45.2

49.6
60.7

125

G lobal 
features
(6 PSIs)

57.7
59.7

53.8
57.4

441

Local 
feature B

62.3
52.6

59.0
73.8

125+441

PSIs + B

64.2
58.1

60.7
73.8

125+441+441

PSIs + B  + SB

O verall Accuracy (% )

Accuracy of 
Level 2 (% )

No. of Features

Features

SVM -Based HLA

 

 

8. Conclusions 
In this study, we used algebraic coding theory and gradient descent method to 

improve the performance of the error-correcting-output-code support vector machine 

(ECOC SVM) classifier by finding out the better penalty parameter C and kernel 

parameters of SVM. The proposed new multi-class SVM classifier is composed of 

training phase and testing phases. Several experimental results show the superiority of 

the proposed scheme over the existing ones. However, there are some factors may be 

considered to improve the ECOCSVM classifier such as the self-tuning ECOC SVM 

uses the gradient descent method to tackle the drawback of ECOC SVM and obtain 

better component binary classifiers; the self-tuning ECOC SVM for multi-class 

classification resolves the phenomena of unclassifiable regions caused by the 

one-against-all, one-against-one, or directed acyclic graph SVM methods; and the 

self-tuning ECOC SVM classifier achieves higher classification accuracy rates than 

the compared SVM classifiers, and has better generalization ability. 
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