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Abstract

The artificial intelligence aid classification of proteins helps bio-researchers to
shorten their experiments, for the prediction can exclusive those wrong answers. But
how to separate the right and the wrong properly becomes an important task.

In this work, we based on our prior researches and combine SVM with ECOC to
develop an efficient classifier and apply to the classification of proteins structure.

The ECOC SVM is an approach for solving multi-class classification problem by
reducing it into a group of binary classification tasks and combines the binary
classification results to predict the multi-class target labels. First, the ECOC SVM
assigns a unique binary string of length n, called ‘codeword’, for every class to
distinguish each other. Then, the n binary classifiers are trained, one for each bit
position in the codeword. To improve the performance of each binary classifier, a
gradient descent method is used to determine the better penalty parameters and kernel
parameters of SVM adaptively. After the training phase, a set of independent binary
SVM classifiers, with their parameters, are constructed automatically. In the testing
phase, the unlabeled data are predicted by evaluating each output result of each binary
classifier and finding the closest vector in the ECOC matrix.

We apply the ECOCSVM to the protein fold classification problem in SCOP
with HLA, which has proposed by us. Experimental results show that the proposed
scheme can achieve good classification accuracy. To further enhance the overall
accuracy, different codeword of different length are also applied to analyze the

classification performance and to obtain better results.
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1. Introduction

It is known that proteins are formed by 20 kinds of amino acid but the functions
are truly decided by the structures of proteins. The sequences of amino acid are called
the first structure of proteins, and the basic forms of proteins are called second
structure of proteins. There are three basic forms of second structure of proteins,
named helix, sheet and plate.

Since the three-dimensional coordinate structures provide insight into the
function, mechanism and evolution of protein, there are several famous classification
databases existed such as SCOP, CATH, DDBASE, Entrez, and 3Dee, which imbue
the structures with context and analysis. These different classification databases of
proteins focus on their own characteristics. For example, SCOP provides a detailed
description of the structural and evolutionary relationships of the proteins of known
structure. Recently, protein classification and protein fold prediction have been solved
by the aid of computer with the strong ability of computation [1, 2, 3]. Computational
methods have been developed for the assignment of a protein sequence to a folding
class in the SCOP also.

In the prior researches, we proposed a hierarchical learning architecture (HLA)
to solve the problems of classification. And we have found that researchers have used
primary global protein sequence in terms of three descriptors as physical, chemical,
and structural properties of the constituent amino acids to code the sequences, Table 1.
In addition to the aforementioned traditional global features, other local features
describing the chain of amino acids representing proteins called the bi-gram and
spaced-bi-gram are also used in feature coding also proposed and used in our
experiments. [ 4 ]. Machine learning methods such as Neural Network and Support

Vector Machine have been induced into this complex classification problem.[1,2,4,6]



Table 1. The descriptors and feature dimension sizes of each of the six protein attributes
(protein sequence information --- PSI).

Characteristics Descriptors Feature Size
Composition (C) 20 kinds of amino acids 20
Predicted Secondary Alpha Beta Loop 21
Structure (S)

Hydrophobicity (H) Positive Neural Negative 21
Volume (V) Large Middle Small 21
Polarity (P) Positive Neural Negative 21
Polarizability (Z) Strong Middle W eak 21
Total Number 125

Support Vector Machine (SVM) is a discriminative method based on the
statistical learning theory and has been widely used in many applications including
the complex problems of bioinformatics [1,2,5,6]. In this research, a different
multi-class support vector machine algorithm, called self-tuning error correcting
output coding (ECOC) SVM is proposed to deal with the multi-class protein fold
classification problem. The ECOC SVM is an approach for solving multi-class
classification problem by reducing it into a group of binary classification tasks and

combines the binary classification results to predict the multi-class target labels.

2. Proteins, Protein databank

Structure Classification of Protein (SCOP) is a famous protein databank, which
uses the evolution and similarity of proteins to classify the structure of proteins. The
data structure of SCOP is found according to the hierarchical structure of proteins. In
the SCOP, the main classes are divided into several classes. The main classes, with
most numbers of protein, are all alpha(« ), all beta( 5), alpha/beta («/8) and alpha
and beta (a + 8). These four classes are named by the structure of proteins [7, 8, 9,
10]. The protein classification in SCOP was performed manually or

semi-automatically, which takes a great amount of time for such a complex task.



2.1 Training Dataset in Experiments

This training dataset was built for the prediction of protein folds based on the PDB
selected sets. The data set was selected by their characteristics so that all proteins in the
data set have less than 35% of the sequence identity for the aligned subsequences
longer than 80 residues. Following the prior published papers [4, 5, 6, 8], the training
data number is 313 and they should be divided into 4 classes with 27 folds according to
their structures representing all major structural classes.
2.2 Testing Dataset in Experiments

The testing dataset was based on PDB-40D set developed by the authors of the
SCOP database [7,8,9,10]. A total number of 385 proteins with identity less than 40%,
same as the prior used, were selected for testing in our research. .Table 2 shows the
numbers of proteins in the training and testing datasets for different protein classes used
in our experiments. Table 3 shows the numbers of proteins in the training and testing
datasets for different folds of each protein class used in our experiments, where there

are 27 folds for the 4 classes in total.

Table 2. Pattern numbers of each classes in SCOP which was picked up to be training

and testing patterns in this study.

Classes Pattern Number (Training Data) Pattern Number (Testing Data)
All Alpha 55 61
All Beta 109 117
Alpha/Beta 115 145
Alpha+Beta 34 62
Total Number 313 385

Table 3. Fold numbers of each class and pattern numbers of each fold in SCOP which

was picked up to be training and testing patterns in this study.

Classes Fold number per class Fold number per class
(Training pattern per fold) (Testing pattern per fold)

All Alpha 6 |13,7,12,7,9,7 6 |6,9,20,8,9,9

All Beta 9 |30,9,16,7,8,13,8,9,9 9 |44,12,13,6,8,19,4,4,7

Alpha/Beta 9 |29,11,11,13,10,9,10,11,11 9 |48,12,13,27,12,8,14,7,4

Alpha+Beta 3 17,13,14 3 |8,27,27

Total Number 27 27




3. SVM, Support Vector Machines

Support Vector Machine (SVM) is a typical two-class classifier and a kind of
universal feedforward network. The SVM will construct a hyperplane in a
high-dimensional features space as the decision surface between positive and negative
patterns. The structural risk minimization ability makes the SVM a very efficient
classifier in various applications including biosequences analysis also [11,12,13,14].

With the further improvements by other researchers recently, the SVM has the
ability to do multi-class classification directly, which is the model adopted here in our

HLA as the constituent multi-class classifiers. [15]
Given the training set S = {(x1, Y1), (X2, ¥2), ..., (Xi, Yy} with explanatory

variables x, e R’ and the corresponding binary class labels y, e{-1+1}, for all
i=1 ---,I,where | is the number of data, and d is the dimension of the problem, we

wish to find a separating d-dimensional hyperplane described by

w-X+h,=0,
where w=[w, w,, ---, W] is the set of linear weights,
X=[X,, X,, -, X;] isthe input dataset, and

by is the constant.

The separation problem is to determine the hyperplane such that w-x+b, >+1 for
positive examples and w-x+b, <-1 for negative examples. If it is separated

without error and the distance between the closest vector to the hyperplane is maximal,
this set of vectors is separated by the optimal hyperplane. In this connection, the SVM

is used to find a hyperplane to maximize the function M as follow:

2

W

The solution of Eq. (2) must satisfy the following constraints of inequality type

6
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yi[(X -w)+b, | =1 i=12.....1.

This is a classic nonlinear optimization problem with inequality constraints. Such an

optimization problem can be solved by the saddle point of the Lagrange function
1o I T
L(w,b, @) _EW W_izzl:ai {yi [W X +bo]—1} :

where ¢ i’s are Lagrange multipliers.

The Lagrangian has to be minimized with respect to w and b and maximized with

respect to « i>0.

Through mathematics reasoning and calculation, one obtains a standard quadratic

optimization problem that can be formulated as follows:

| |
Maximize Ly (ar) =) ¢ 1 DV ) X

i=1 2i,j:l s
- - 1 T T
or Maximize L, (a):—za Ha+f '«
|
subjectto ¢, >0, i=1,2...,1 and D ay =0.
i=1

separating rule is the following indicator function

f (x) =sign[NZw: y, o’ (X, -x)+b0j,

i=1
where Ny, denotes the number of support vectors, x;are the support vectors, o are

the corresponding Lagrange coefficients, and by is the constant given by
1 . .
b, :E[(Wo-x M) +(w, -x (—1))],

where we denote by x (1) any support vector belonging to the first class and x'(-1) a

support vector belonging to the second class.

(3)

(4)

(5)

(6)

(7)



In practical applications for real-life data, the two classes are not completely
separable and the separating plane is always a nonlinear function of the data. So the
idea of feature space is discovered to solve this problem. The idea in designing a
nonlinear SVM is to map an input vector xeR? into a vector z of a

higher-dimensional feature space F (z=¢(x), where ¢ represents a mapping
R’ - R"), and to solve a linear classification problem in this feature space:
xeR" > z(x)=[ag(x), a,4,(x), -, a4,X] eR’,

where a, is constant. Since the computation of the dot products is prohibitive if the
dimension of transformed training vectors ¢(x;) is very large, and since ¢(x;) is
not known a priori, the Mercer’s theorem for positive definite functions allows to
replace #(X;)-#(x;) by a positive definite symmetric kernel function k(x;,x;), i.e.,
k(X;,X;)=8(x;)-#(x;). So we need to select a kernel function and then solve the

following dual quadratic optimization in order to obtain an optimal hyperplane for any

linear or nonlinear space:

1
max L (a)zzai_zz yiyjaiajK(Xi’Xj)

a i=1 ij=1

|
subjectto 0<eg; <C,i=12..,1 and >y =0. (8)
i=1
The indicator function is
NSV
f (x) =sign (Z Yi aiok® (%; - %) + boJ , )
i=1

where a kernel k. depends on a set of parameters © .

4. Error-Correcting Output Coding (ECOC)
Error-correcting output coding (ECOC) is an approach for solving multi-class

categorization problems [16]. It reduces the multi-class classification problem to a

8



group of binary classification tasks and combines the binary classification results to
predict multi-class labels.
In supervised classification problems, one is given a training set S={(x1, Y1), (X2,

y2), -+, (Xn, Yn)} € X, containing n examples. Each sample (X, y) consists of an
instance xe X and a Iabelye{l, 2, -, k}, where X is the instant space and

k>2 is the number of classes. A classifier is a mapping F:X —{1, 2, ---, K}
from instances to labels. In the ECOC method, a mx| binary code word matrix M
(where 1> 1log, k) has one row (code word) for each of k classes, with each column
defining one of | sub-problems that use a different labeling. The binary code of error
correcting output code is shown in Fig. 1. Specifically, for the jth (j = 1, 2, ..., I)

sub-problem, a training pattern with target class C,(i=1, 2, -, k) is re-labeled

as class C; if Mjj = b, and as class C, if Mjj= b, where b is a binary variable,
typically zero or one. The re-labeling is to consider the k classes as being arranged
into two super-classes.

Next, the ECOC classifier will build an individual binary classifier for each

column of the code word matrix. To summarize, in the training phase, an ECOC
classifier consists of learning a set 8:{81, $F, 8“} of independent binary
classifiers. Then, in the testing phase, the correct class of an unlabeled x" is
hypothesized as follows. First evaluate each independent classifier on x", and then

generate a n-bit vector S(Xh):{gl(x“), F2(X"), -, 9“(x“)} . The generated

bit-vector $(x") which is closest to the row of M according to some distance will be

found. Either Hamming distance A or loss-based decoding can be used here.

The performance of the ECOC SVM classifier has been shown to superior to



other multi-class SVM classifiers. However, it will be affected by some factors such
as performance of the composing binary classifiers, independence of the binary
classifiers, and the loss function. In the next section, an ECOC SVM classifier will be

proposed to improve the classification accuracy and design efficiency of the ECOC

classifier.
Classes Code words (each column for one binary) ==
0 -1 -1 -1 N or +1
1 -1 +1 -1 +1 e 1
2 +1 -1 +1 _l ...... +1
3 -1 -1 +1 1 e -1
m -1 +1 -1 I PP 1

Fig. 1. Error Correcting Output Code matrix, where m is the number of classes (rows)
and | is the number of classifiers (columns).

5. The ECOCSVM Classifier
Since the accuracy of an ECOC SVM classifier is highly affected by the

performance of its composing binary classifiers, the performance of a binary SVM
classifier is determined by several parameters such as the penalty parameter C and
kernel parameters. The penalty parameter C controls the tradeoff between margin
maximization and error minimization. The kernel parameters determine the proper
and efficient non-linear mapping from pattern space into feature space. We find out
that the best penalty parameter C and kernel parameters to make every binary SVM
classifier have the best classification function so that the classification mistakes can
be eliminated. Besides, the accuracy of the whole ECOC SVM classifier can be

increased globally.

10



There are many researchers have proposed different methods to improve the
problem of kernel model selection [16,17]. We adopt the efficient on-line processing
of the gradient descent method to improve the performance of ECOC SVM here, for
its efficient. In the SVM methodology, a kernel function which depends on one or
several parameters can be encoded into a vector

0=, 6, -, 6, .
Based on the chosen kernel functions, a class of decision functions can be

parameterized by «, b, and © as follows:

fa,b,@ (x)= Sign(iai Yike (X, Xi)+by).

In addition, there is a penalty parameter C that controls the tradeoff between margin
maximization and error minimization as mention above. In our approach, the penalty
parameter C as another tunable parameter of kernel functions is considered first.
Because the “soft margin” concept proposed [18, 19,20], in which it was shown that
the soft-margin SVM with quadratic penalization of errors can be considered as a
special case of the hard-margin version with the modified kernel:

K<—K+£I,
C

where 1 is the identity matrix and C a constant for penalizing the training errors. Thus
C will be considered as another tunable parameter of a kernel function.

To obtain a proper value of the penalty parameter C and a proper
kernel-parameter vector, we first consider the estimation of the generalization error E
of the SVM. In pattern classification area, there are several measures of the expected
error rate of an SVM. Among these, the single validation error estimate and
leave-one-out error estimate are used mostly. Then, we adopt the single validation
estimation method to estimate the generalization error of the SVM in our approach.

11

(10)

(11)

(12)



This estimate is given as follows:
1 N
E= qu](_yi f (Xi)) ) (13)
i=1

where W is the step function: ¥ (x) = 1 when x> 0and ¥ (x) =0, otherwise; and N
is the size of the data set.

The goal is to find the values of the parameters « and ® such that margin M is
maximized and the generalization error E is minimized. With the parameter ® fixed,
we can obtain «® =arg max W («) and then choose ® as

®=arg m@in E(a, 9). (14)

Because the step function V¥ is not differentiable, we cannot use a gradient
descent method to minimize the estimates of generalization errors. To circumvent this
problem, Platt proposed the following estimate of the posterior distribution

P(Y =1|X =x) of an SVM output:

1
1+exp(Af (X)+B)

P(Y =1|]X =x) = (15)

where f(x) is the output of the SVM. The constants A and B in the above equation
are found by minimizing the Kullback-Leibler divergence between P and an empirical
approximation of P built from a training set S={(x1, y1), (X2, ¥2), -+, (Xn, ¥Yn)} € X,

containing n examples:

1-vy,
2

(A, B)=arg max (- xlog(p(x, )+ =2 xlog(L- p(x,). (16)

The error probability of either target value for a given data example x, is formulated by
E=p(yi#z)=p "(1-p)", (17)
where z, = f, = f(x;) is the corresponding SVM output value, p; is the estimated

posterior probability, and t; is that t =1 if the input vector X, belongs to class

12



C,and t =0 if it belongs to class C,. For a validation set of size N, the average

estimate of the error could be written as:
N 1< 1, t;

E= Ei:_z P (-p)" (18)

=1

1
NG NG

So the gradient of the generalization error E can be computed as follows [26]

OE _OE| | OEda (19
06, 00,| .. ©0adf,
: , OE
where 6, isthe number in the vector ®,andr =1, 2, ---, n. The components P
a
can be computed as follow
N
OF _ 1 $-0F op, Of; (20
da N4z op; of, O
and
B - p)t -t p) pyt (21)
o =-Pi 'L P; i Pi)" b
op; 2_(Af,+B)
—L=—Ape"™ 22
o P (22)
of;
£=yiK@(Xj,Xi), (23)
wherey, =+1 is the bipolar target of example x,. Notice that we can include the SVM
bias b in the vector o as a=(«, «,, -, ,,b).Then, it can be shown that
Oa _ M (24)
00, 00,
K' Y) . v .
where H = v o with the components K =y,y;K(x;,X; ), where vector Y is

the target vector corresponding to the support vectors set, and Y is the transpose

matrix of the matrix Y. So we can update the parameters €. such that E is minimized

13



by the gradient descent method

Af = —e OE(a,6,)

, 25
r % (25)

where ¢ is the amplitude of the step along the search direction.

6. The measurement of Accuracy

In our HLA classification approach, such confusing conditions will not happen.
Therefore, the accuracy measurement in our experiments is quite clear and simple. Let
us use a function A (accuracy) to indicate the classification correctness of a protein
pattern fed into the HLA. Then the total number of correctly classified proteins can be

expressed as:

O = A(level 2| levell)

= A(level 2) A(levelLN level 2) (26)

where A is a conditional function whose value is 1 only when a protein pattern is
correctly classified by the classifiers in both Level 1 and Level 2 of the HLA, and is 0.

Based on the above concepts, the accuracy measurement of the proposed approach

is defined as follows. If the number of testing proteins belonging to the F" fold is n,,

but the tested classifier only recognizes o, proteins as the F" fold, then the accuracy

: e 0, P
rate of this tested classifier is set as —- for the F" fold. The total classification
n.

accuracy can be briefly calculated as follows.

N=n+n,+n+..+n=>n (inthis case, i=27, N=385) (27)
i=1
O=0,+0,+0;+..+0,= >0,  (in this case, i=27) (28)
i=1
@)
_o 29
Q N (29)

where N is the total number of testing proteins data, O is the total number of correctly

classified proteins in Eq. (26), and Q is the classification (prediction) accuracy.

14



7. Experimental Results

To demonstrate the proposed techniques for multi-class protein fold classification,
several experiments are performed and the results are illustrated. The experiment
datasets are based on the protein database, SCOP, introduced in above section. The
proposed ECOC SVMs with different codeword length are trained and test based on
these datasets. All the data are summarized in Table 4 ~ Table 6 and the previous results

are also listed in Table7 ~ Table 8.

Table 4. Protein-fold classification accuracy of various single-level classification
approaches, where the input PSls fed into the classifier are C+S+H+P+V+Z.

Classifier MLP GRNN RBFN SVM
Accuracy
Q(C+S+H+P+V+Z) (%) 48.8 44.2 49.4 51.4

Table 5. Protein-fold classification accuracy comparisons of the proposed HLA and
the existing approaches, where “OvQO” standing for the one-versus-others
method, “uOvQO” for the unique one-versus-others method, and “AvA” for the
all-versus-all method.

PS| C C+S |C+S+H| C+S+H+P | C+S+H+P+V |C+S+H+P+V+Z

%) | %) | (%) (%) (%) (%)
OvO (NN)* | 205 | 36.8 | 40.6 41.1 41.2 41.8
OvO (SVM)* | 435 | 43.2 | 45.2 43.2 44.8 44.9
uOvO (SVM)* | 49.4 | 48.6 | 51.1 49.4 50.9 49.6
AVA (SVM)* | 449 | 52.1 56 56.5 55.5 53.9
RBFN 40.3 | 48.6 | 50.1 52 49.1 49.4
(Single-stage)*
HLA (MLP) 32.7 | 48.6 | 475 43.2 43.6 44.7
HLA (RBFN)| 44.9 | 53.8 | 53.3 54.3 55.3 56.4
HLA (GRNN) | ----- 45.2
HLA (SVM) [ - 53.2
HLA (ECOC) | 54.81 ] 54.01 | 55.06 53.25 54.81 56.1

Note: * Data from the paper (Dubchak et al., 2001[5] ).
** Using RBFN directly to classify the proteins into 27 folds (i.e., single-level approach).
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In Table 4, the single-layer approach is used to directly classify each test input
vector into 27 folds. It can be seen that the performance of proposed method can have

good accuracy when compared to other methods.

Table 6. Classification accuracies of the ECOC-SVM-based HLA with various
combinations of global features (C+H+S+P+V+Z) and local features
(bi-gram coded feature (B) and spaced bi-gram coded feature (SB)).

ECOC-Based HLA

Features Global features(6PSI) PSIs+B PSIs+B+SB
No. of Features 125 125+441 | 125+441+441
Accuracy of Level 1 80.26 83.38 84.94
Group 1 70.49 78.69 83.61
Group2 54.7 66.67 71.79
Accuracy of Level 2
Group 3 40.32 50 56.45
Group 4 38.71 50 56.45
Overall Accuracy(%) 56.1 65.45 68.57

Table 7. Classification accuracies of the RBFN-based HLA with various combinations
of global features (C+H+S+P+V+Z) and local features (bi-gram coded
feature (B) and spaced bi-gram coded feature (SB)).

RBFN-Based HLA
Global Local PSIs+B | PSIs+ B + SB
Features features feature B
(6 PSIs)
No. of Features 125 441 125+441 125+441+441
Accuracy of Level 1 81.6 79.2 83.1 83.6
Accuracy of Class 1 67.2 59.0 77.0 73.8
Level 2 (%) Class 2 52.1 56.4 62.4 63.2
Class 3 58.6 60.0 62.8 69.0
Class 4 48.4 56.5 54.8 53.2
Overall Accuracy (%) 56.4 58.2 63.7 65.5
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Table 8. Classification accuracies of the SVM-based HLA with various combinations
of global features (C+H+S+P+V+Z) and local features (bi-gram coded
feature (B) and spaced bi-gram coded feature (SB)).

SVM-Based HLA
Global Local PSIs+B | PSIs+ B + SB
Features features feature B
(6 PSls)
No. of Features 125 441 125+441 | 125+441+441
Accuracy of Level 1 81.3 77.9 83.4 84.4
Accuracy of Class 1 60.7 57.4 73.8 73.8
Level 2 (%)  |class 2 49.6 53.8 59.0 60.7
Class 3 56.6 60.0 64.8 65.5
Class 4 45.2 59.7 52.6 58.1
Overall Accuracy (%) 53.2 57.7 62.3 64.2

8. Conclusions
In this study, we used algebraic coding theory and gradient descent method to

improve the performance of the error-correcting-output-code support vector machine
(ECOC SVM) classifier by finding out the better penalty parameter C and kernel
parameters of SVM. The proposed new multi-class SVM classifier is composed of
training phase and testing phases. Several experimental results show the superiority of
the proposed scheme over the existing ones. However, there are some factors may be
considered to improve the ECOCSVM classifier such as the self-tuning ECOC SVM
uses the gradient descent method to tackle the drawback of ECOC SVM and obtain
better component binary classifiers; the self-tuning ECOC SVM for multi-class
classification resolves the phenomena of unclassifiable regions caused by the
one-against-all, one-against-one, or directed acyclic graph SVM methods; and the
self-tuning ECOC SVM classifier achieves higher classification accuracy rates than

the compared SVM classifiers, and has better generalization ability.
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