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一、中文摘要

本論文將對一受振動干擾下之力平衡式速
率陀螺儀作詳細非線性動力分析與混沌控制
析，此時飛行器相對於自轉軸作ωZ(t)轉動。當飛
行器相對於自轉軸作穩態轉動時，利用
Routh-Hurwits 理論對此自治系統作穩定性分
析，給出系統參數穩定條件。當飛行器相對於自
轉軸作簡諧轉動時，這系統為參數激勵強非線性
耗散系統，隨著系統參數變動下，系統呈現規則
與混沌反應行為。經由相軌跡、龐加萊截面、平
均功率普與李雅普若夫指數等數值模擬方法來
分析系統，發現隨系統參數變化，系統存在數種
不同型態的解與分歧行為如 Hopf 分歧、對稱分
歧與倍週期分歧，並得到系統混沌行為。並在適
當的力矩回饋控制下能有效地抑制混沌運動。

關鍵詞：速率陀螺儀、分歧、混沌

Abstract
An analysis of stability and chaotic dynamics is 

presented of a single-axis rate gyro with torque control in 
vibratory situation. For the autonomous case in which the 
vehicle undergoes a steady rotation, the necessary and 
sufficient conditions for stability of the system were 
provided by Routh-Hurwitz theory. Also, the 
degeneracy conditions of the nonhyperbolic point were 
derived. The stability of the nonlinear nonautonomous 
system was investigated by Liapunov stability and 
instability theorems. As the electrical time constant is 
much smaller than the mechanical time constant, the 
singularly perturbed system was obtained by the 
singular perturbation theory. The Liapunov stability of 
this system by studying the reduced and boundary-layer 
systems was also analyzed. The numerical simulations 
were performed to verify the analytical results. The 
stability regions of the autonomous system were 
obtained in parametric diagrams. For the 

nonautonomous case in which ωZ(t) oscillates near 
stability boundary,  periodic, quasiperiodic and chaotic 
motions were demonstrated by using time history, 
phase plane and Poincaré maps.

Keywords: Rate Gyro, Bifurcation, Chaos

二、Introduction

The field of application of gyroscopes is widespread, 
such as in the navigation and control system, owing to 
its distinctive property. Here, a single-axis rate gyro is
used for the measurement of angular velocity in 
spinning space vehicles. For all applications, it is a 
critical problem to show the stability of motion of the
gyro, both theoretically and practically.
  Several interesting problems have been studied 
previously in the analysis of motion of the gimbal of 
rate gyros in spinning vehicles [1-4]. For the case in 
which �Z is uncertain and constant, using the Liapunov
approach, conditions for global and local asymptotic 
stability of the gyro in spinning vehicles have been 
obtained [1]. The motion of a single-axis rate gyro in 
consideration of the angular velocity of vehicle about 
its spin axis and the angular acceleration of the vehicle 
about its output axis has been examined for small 
rotation � of the gimbal [2-3]. The stability of a rate 
gyro mounted on a vehicle, which has a time-varying 
angular velocity about its spin of the gyro, is studied by 
the Liapunov direct method [4]. All of them are 
two-dimensional systems. An analysis of stability and 
chaotic dynamics is presented of a rate gyro with 
feedback control mounted on a space vehicle that is 
spinning with uncertain angular velocity �Z(t) about its 
spin of the gyro [5]. This system is a three-dimensional
nonlinear one.
A nonlinear system can also exhibit complicated steady 
state behaviors referred as to chaos in some parametric 
space [6]. The chaotic attractor so called “deterministic
chaos” that was discovered by Lorenz in the numerical 
study of meteorology. Chaotic motions whose time 
histories have a sensitive dependence on initial 
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conditions occur when some nonlinearities exist [6-10]. 
There are many routes to chaos in dissipative systems. 
Three prominent routes to chaos have been explored, 
including period doubling, intermittency, and 
Quasiperiodic routes, and related to period doubling, 
saddle node, and Hopf bifurcations respectively [6-8]. 
In gyroscopic systems, the dynamics of gyros also 
exhibit chaotic behavior. In this paper, the 
parametrically excited system is studied and exhibits 
the nonlinear phenomena including the existence of 
periodic, quasiperiodic and chaotic motions of the 
system.
Singular perturbations, traditional efficient tools for 
determining physically meaningful subsystems, are 
developing into systematic approach to multi-time 
dynamic systems. These methods applied in power 
systems and Markov chains are used to decompose the 
dynamic systems into reduced (slow) and 
boundary-layer (fast) systems [11-12]. The singular 
perturbation method is also used to derived the special 
form of the gyro system.

In this paper, the stability and chaotic dynamics of 
a single-axis rate gyro with torque control in 
vibratory situation are studied. The controller of the 
system is modeled by the first order dynamic with a 
time constant of O(1) so that the feedback control 
system is a three-dimensional one. For the case in 
which �Z is uncertain and constant, the stability 
conditions and bifurcation surfaces of the system were 
derived by Routh-Hurwitz theory and local bifurcation 
analysis. For the nonlinear nonautonomous system, the 
stability of the feedback control system will be obtained 
by using the Liapunov direct method. When the time 
constant of controller is much smaller than the 
mechanical time one, the singularly perturbed system is 
obtained by singular perturbation theory. The Liapunov 
stability of this system is also analyzed by studying the 
reduced and boundary-layer systems. Finally, the 
degeneracy conditions of the system are presented in 
parametric planes by numerical simulation. The 
numerical results of the perturbation of an uncertain 
angular velocity undergoing small harmonic excitation
are carried out to examine the various forms of dynamic 
behavior by using the time history, phase plane, 
Poincaré maps.

三、Equations of Motion

We consider the model of a single-rate gyro mounted 
on a space vehicle as shown in figure 1. The gimbal can 
turn about output X axis with rotational angle θ . 
Motion about this axis is resisted by damping torque 
defined by )(θ&df . Using Largrange’s equation, the 
differential equation for the output deflection angle θ of 
a rate gyro with feedback control was derived as 
follows[13]: 

,)()cossin)(sin

cos)(()sincos()()(

cXgZYZ

YggZYRdg

TAA

CBACnfAA

=++−+

−++++++

ωθωθωθω
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where 
Cn C constR Y Z= − + =( & sin cos ) .ψ ω θ ω θ ,

)(θ&df = l1θ& + l3θ& 3+…+ lrθ& r, r：odd number, 

l1>0, and )(θ&df θ& >0.
ωX, ωY, and ωZ denote the angular velocity 

components of the platform along output axis X, input 
axis Y, and normal axis Z, respectively. A, A (=B), C
and A B Cg g g, ,  denote the moments of inertia of 
rotor and gimbal, respectively, about the gimbal axes ξ, 
η, ζ. Tc is the control-motor torque along the output axis 
of the system to balance the corresponding gyroscopic 
torque. The torque and electric current of control-motor 
can be modeled by the following relationship:

Tc = KTI,                                (2)
LI RI K Ka d
& ( ) &+ = − −θ θ θ0 ,             (3)

where electromotive force proportional to the difference 
between the prescribed motion )(tdθ  and the 
rotational angle θ, that is u Ka d= −( )θ θ , is applied 
to the control-motor. I, R, L, and K0 are the current, 
resistance, inductance, and back-electromotive constant 
of the control-motor; KT  denotes the torque constant 
of the control-motor. 

Equations (1)-(3) thus represent a feedback 
control system in which position feedback is applied to 
the gyro motion. The prescribed motion of the gyro is 
desired to be fixed at the origin, i.e. θ d = 0, in which 
the relationship of the output angle θ proportional to the 
input angular velocity ωY  is held. Thus, it is very 
important to analyze the stability of the measuring 
origin of a rate gyro system mounted in a wobbling 
space vehicle, because the more precise analysis for the 
system, the more reliability for the guidance. 

We are interested in the nonlinear behavior of 
dynamical motion when the vehicle undergoes 
uncertain angular velocity ωZ(t) about the spin axis
(Z-axis), acceleration )(tXω&  about the output axis 
(X-axis), and the angular velocity about OY is zero, i.e.,

0=Yω . Now the feedback control system is studied in
the following form
&x y= ,

XZZ xtDxtDzDyDy ωωω && −+−+−= 2sin)(2/1sin)()( 2
4321

,
&z D z D x D y= − − −5 6 7 ,                      (4)
where
x y z I= = =θ θ, &, , )/()()(1 gd AAfD += θθ && , 

)/(2 gT AAKD += , D Cn A AR g3 = +/ ( ) ,

D A B C A Ag g g4 = + − +( ) / ( ) , D R L5 = / , 
D K La6 = / , D K L7 0= / .

In this section, the stability of both autonomous 
system and nonautonomous system are discussed by
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distinct methods. The stability of the autonomous 
system is analyzed to obtain the necessary and 
sufficient conditions for locally asymptotical stable 
motion at the fixed point by Routh-Hurwitz criterion. In 
addition, the Liapunov direct method [13] is used to 
obtain the conditions sufficient for asymptotical 
stability and instability of motion of the feedback 
control system.

3.1 The stability of the nonlinear autonomous system
For the case when Xω&  = 0 and ωZ=ωZC=const., 

this system is autonomous. One stationary point of the 
nonlinear autonomous system is the origin (x, y, z)=(0, 
0, 0). Let the disturbed motion as x=0+x1, y=0+x2, 
z=0+x3, the equations for disturbances are as:
&x x1 2= ,

5
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3

1
2

413322112
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,

&x D x D x D x3 5 3 6 1 7 2= − − − ,                 (5)
where D11=l1/(A+Ag), D12= l3/(A+Ag), h(ωZC )= 
-D3ωZC/6+2D4ωZC

2/3.
The stability analysis of the origin of the autonomous 
system will be studied by the Routh-Hurwitz criterion 
as follows.
First, we obtain the Jacobian matrix J  at the origin of 
the system (5) in the form of

J  =

















−−−
−

576

211

010

DDD
DDQ ,Q= -D3ωZC+D4ωZC

2,        (6)

and the characteristic equation of J  in the form of
λ3+(D5+D11)λ2+(D2D7-Q+D11D5)λ-QD5

+D6D2=0 orλ3+a1λ2+a2λ+a3=0.          (7)
The Hurwitz matrix H for the above polynomial is

H =






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





3

123

1

00

01

a
aaa

a
.                          (8)

The necessary and sufficient conditions for all the roots 
of characteristic equation (7) to have negative real parts 
are provided by the Routh-Hurwitz criterion, i.e., the 
principle minors of the Hurwitz matrix H must all be 
positive. So, the stability conditions are obtained as 
follows
D5+ D11>0,                                (9.a)
D5D2D7+D11D5

2+D11D2D7-D11Q+D11
2D5-D6D2>0, i.e., 

e1ωZC
2+e2ωZC+e3>0,                     (9.b)

-QD5+D6D2>0, i.e., e4ωZC
2+e5ωZC+e6>0,         (9.c)

where e1=e4=-D4<0, e2=e5=D3, e6=D6D2/D5,
e3=(D5D2D7+D11D5

2+D11D2D7+D11
2D5-D6D2)/D11

The above stability conditions can be rewritten as
ωZC1 < ωZC < ωZC2,                         (10.a)
where 
ωZC1=[-e2-(e2

2-4e1pmin)1/2]/(2e1)=[D3-(D3
2-4D4pmin)1/2]/(2

D4),                                     (10.b)
ωZC2=[D3+(D3

2-4D4pmin)1/2]/(2D4),pmin=Min(e3,e6). (10.c)
That all the roots of the characteristic polynomial (7) 

of the Jacobian matrix J  have negative real parts, i.e., 
the motion of the linearized autonomous system is 
asymptotically stable at the fixed point.  Alternatively, 
the system possesses critical behavior when Jacobian 
matrix J  contains the eigenvalues with zero real parts in 
the following bifurcation surfaces: 
1.There exists one zero eigenvalue (λ1=0) of this 

linearized system for the system parameter 
Q=D6D2/D5, i.e., ωZC=ωZC1 or ωZC2, on stability 
boundary, pmin=e6. The residual eigenvalues are 
λ2,3={-(D11+D5)±[(D11+D5)2-4(D2D7-Q+D11D5)] 1/2}/2;

2.There exists a pair of pure imaginary eigenvalues 
(λ1,2=±jω0) of this linearized system for the system 
parameter 
Q=(D5D2D7+D11D5

2+D11D2D7+D11
2D5-D6D2)/D11, i.e., 

ωZC=ωZC1 or ωZC=ωZC2, pmin=e3., where 
ω0=(-D11(D5D2D7+D11D5

2-D6D2))1/2/D11 is a real 
number, i.e., D2>D11D5

2/(D6 -D5D7). The residual 
eigenvalue is -(D11+D5);

3.There exists a double zero eigenvalues (λ1,2=0,0) for 
(a) the system parameter Q=D11D5D6/(D6 -D5D7) and
D2=D11D5

2/(D6 -D5D7), the residual eigenvalue is
-(D11+D5); (b) the system parameter Q=D6D2/D5 and 
D11=D2(D6 -D5D7)/ D5

2, the residual eigenvalue is still 
in the form of -(D11+D5) but the value adapts for 
varying the system parameter D11,

where Q=-D3ωZC+D4ωZC
2, D11=l1/(A+Ag), 

D2=KT/(A+Ag).

3.2 The stability of the nonautonomous system
For the case when )(tXω&  and ωZ(t) are time-varying 
function, the syetem is the nonautonomous system and 
the motion of the system (4) can be solved analytically, 
approximately or numerically as 

)(),(),( 000 tIztytx === θθ & , which satisfies the 
following equation:

,2sin2/1sin)( 020
2

403010 IDDDD XZZ =+−++ ωθωθωθθ &&&&       (11.a)

0I& +D5I0 = -D6θ 0-D7 0θ& .                   (11.b)
Let the disturbed motion be 

302010 )(,)(,)( xtIzxtyxtx +=+=+= θθ & , where x1, x2, x3 are 
deviations from their respective nominal conditions. 
The differential equation (4) for the disturbances is
&x x1 2= ,

4
21

33
212

2
01

2
413322112

),())((

))(()()(

1

1

xxOxthxD

xthxtDxtDxDxDx

Z

ZZtZt

+−−

−+−+−=

ω

ωωω&
,

&x D x D x D x3 5 3 6 1 7 2= − − − ,                  (12)
whereD3t=D3cos(θ0(t)),D4t=D4cos(2θ0(t)),
h0(ωZ(t))=D3tωZ(t)/2-D4tωZ

2(t),h(ωZ(t))= 
-D3tωZ(t)/6+2D4tωZ

2(t)/3.
The stability of the motion of the above system (12) is 
investigated by the Liapunov direct method. Now we 
take the Liapunov function of quadratic forms:
V(λ1,λ2)=λ1x1

2/2+λ2x1x2+x2
2/2+λ2D2x3

2/(2D6),     (13)
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where λ1 and λ2 are undertermined positive constants. 
There exists a number of Liapunov function candidates 
varied with the proper value of λ1, λ2, in which each of 
Liapunov candidates can give the conditions sufficient 
for stability. By choosing a number of λ1, λ2 properly, 
we can obtain the conditions sufficient for asymptotical 
stability of motion of the feedback control system. We 
have the negative time derivative of V through equation 
(12) as

),( 21 λλV&− =λ2[D3tωZ(t)-D4tωZ
2(t)]x1

2+[λ2D11+D3tωZ(t)-
λ1-D4tωZ

2(t)]x1x2+(D11-λ2)x2
2+(λ2D8-D2)x2x3+λ2D9x3

2+
W1

*                                                             (14)
where D8=D2D7/D6, D9=D2D5/D6, and W1

* represents 
higher order terms.
Since − &V  contains time explicitly, we must find a 
function W that does not contain time explicitly such 
that − ≥&V W. We take W as:
W=λ2(D2+λ3)x1

2+(λ2D11+D2-λ1+λ3)x1x2+λ2x2
2+(λ2D8-D

2)x2x3+λ4x3
2,                               (15)

where λ3 and λ4 are undertermined positive constants. 
By Sylvester’s theorem[13], W is positive definite if
λ2 > 0,                                  (16.a)
λ3 > -D2 = - KT/(A+Ag),                     (16.b)

4
2

2284232232211

14
2

2284232232211

/])(4)[()(

/])(4)[()(

λλλλλλλλ

λλλλλλλλλ

DDDDD

DDDDD

−−++++

<<−−+−++

                                       (16.c)
λ4 > (D2-λ2D8)2/(4λ2) > 0,                   (16.d)
are satisfied. Furthermore,

V&− -W=λ2[-D2+(D3tωZ-λ3)-D4tωZ
2]x1

2+[-D2+(D3tωZ-λ3)-
D4tωZ

2]x1x2+(D11-2λ2)x2
2+(D9λ2-λ4)x3

2+W*            (17)
where W* represents the terms of higher degree. If the 
following inequalities are held, then 0≥−− WV&  (= 0 

only when x x x1 2 30 0 0= = =, , ), i.e., WV −− &  is 
positive definite. So − &V  is positive definite:
D4t > 0, i.e., -π/4 < θ0 < π/4

)2/())(4()2/())(4( 4324
2
334324

2
33 ttttZtttt DDDDDDDDDD λωλ +−+<<+−−
                                  (18.a)

24
2
33 )4/( DDD tt −<λ                      (18.b)

D11 > 2λ2 > 0                             (18.c)
4λ2(D11-2λ2)-[-D2+(D3tωZ-λ3)-D4tωZ

2] > 0, i.e.,  (18.d)
If )2(44/ 211224

2
33 λλλ −−−< DDDD tt , then 

)2/())]2(4)[(4( 42112324
2
33 ttttZ DDDDDD λλλω −++−−< or

)2/())]2(4)[(4( 42112324
2
33 ttttZ DDDDDD λλλω −++−+> .(18.e)

If )2(4)4/( 211224
2
33 λλλ −−−> DDDD tt , then

ωZ real number∈ ℜ ℜ: .              (18.f)
λ4 <D9λ2                                              (18.g)

By Sylvester’s theorem, the sufficient condition for the 
positive definiteness of V is

λ1 > λ2
2 > 0.                            (19)

From equations (16.c), (16.d) and (19), we have

HL λλλ << 1 , where

max4
2

2284232232211
2
2 )/])(4)[(,( λλλλλλλλλλ DDDDDL −−+−++= ,

(20.a)

4
2

2284232232211 /])(4)[( λλλλλλλλλ DDDDDH −−++++= .                                  
(20.b)

From equations (16.b) and (18.c), we have
λH> 

4
2

2284232232
2
2 /])(4)[(2 λλλλλλλλ DDDD −−++++ >λ2

2. 

                                                                                   (21)
So the parameter λ1 can be chosen in the domain 
constrained by the above inequalities. Similarly by the 
former inequalities (16.b), (18.b), (18.e) and (18.f), we 
know that λ3 can be chosen if

24
2
332 4/ DDDD tt −<<− λ                   (22)

is held. From equations (16.d) and (18.g), the parameter 
λ4 also can be chosen as:
( ) / ( )D D D2 8 2

2
2 4 9 24− < <λ λ λ λ , i.e.,        (23)

the following inequalities are held

98822 2/ DDforDD <>λ ,            (24.a)

λ2 2 8 8 92 2> =D D for D D/ ( ) ,       (24.b)

D D D D D D for D2 9 8 2 2 8 9 82 2 2/ ( ) / ( )+ < < − >λ
.         (24.c)
From equations (18.a), (18.c), (18.e), and (18.f) by 
properly selecting a suitable λ2 of equation (24), and a 
number of λ3 of equation (22), we can get the following 
conditions that assure both V and V( , ) &( , )λ λ λ λ1 2 1 2−
are positive definite:
ωZ 1=0 <ωZ < ωZ 2=D3t/D4t, and                (25a)

211 2λ>D ,                               (25b)
λ2 can be taken from equation (24).

According to the Liapunov asymptotical theorem, 
the equation (25) is the condition sufficient for stability 
of the system, and the motion ),,(),,( 000 II θθθθ && =  is 
asymptotically stable.

The conditions sufficient for instability of motion 
of the feedback control system are considered by using 
the Liapunov instability theorem. We construct the 
Liapunov function as
V(m1, m2) = -m1x1

2/2-m2 x1 x2+ x2
2/2+m2D2 x3

2/(2D6)                             
(26)

where m1 and m2 are undetermined positive constants. 
Then we have

),( 21 mmV&− = -m2[D3tωZ(t)-D4tωZ
2(t)]x1

2

+[-m2D11+D3tωZ(t)+m1-D4tωZ
2(t)]x1x2+2m2D2x1x3+(D11+

m2)x2
2+(m2D8-D2)x2x3+m2D9x3

2+ W2
*                   (27)

where W2
* represents the terms of higher degree.

Since − &V  contains time explicitly, we must find a 
function W that does not contain time explicitly such 
that − ≥&V W. We take W as:
W = -m2e-x1

2+(e--m2D11+m1)x1x2+m2x2
2

+2m2D2x1x3 +(m2D8-D2)x2x3+m3x3
2                      (28)
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where −∞>> −e0 .  By Sylvester’s theorem, we 
know that W is positive definite if

HL mmm << 1 , where
−− −−−= ememDmL 2211 2 ,
−− −+−= ememDmH 2211 2               (29.a) DavDav mmmmm +<<− 1 , where

322822211 /)( mDmDmDemDmav −+−= − , 
2
332

2
22832

2
22 /]4))[(( mmmDmDmemDmmD −−+= − ,     (29.b)

m2 > 0 (29.c)
0 < m3 < (D8m2-D2)2/(4m2) , for 0 > e- > -m2D2

2/m3(29.d)
m3 > (D8m2-D2)2/(4m2) , for e- < -m2D2

2/m3          (29.e)
are satisfied. Furthermore,
− &V -W = m2(e--D3tωZ+D4tωZ

2)x1
2+(-e--D3tωZ-D4tωZ

2)x1x2

+D11x2
2+(m2D9-m3)x3

2.                       (30)
If the following inequalities hold, then − &V - W ≥ 0, i.e., 
− &V  is positive definite:
D4t > 0, i.e., -π/4 < θ0 < π/4,

)2/()4()2/()4( 44
2
3344

2
33 ttttZttttZ DeDDDorDeDDD −− −+>−−< ωω ,  (31.a)

D11 > 0                                  (31.b)

)2/()164()2/()164( 424114
2
33424114

2
33 tttttZttttt DmDDeDDDDmDDeDDD +−+<<+−− −− ω ,

(31.c)
m3 < m2D9.                               (31.d)
From equations (29.a), and (29.b), if mL < mav < mH are 

satisfied, i.e., (0, )/()2( 82
2
2 DDeD −−− )max < m2 < 

)/()2( 82
2
2 DDeD −−+ , the parameter m1 can be 

chosen. Similarly by the former inequalities (29.d),
(29.e) and (31.d), we know that m3 can be selected. 
Also from equations (31.a), (31.b), and (31.c), by 
properly selecting a number of e-, we can get the 
conditions that assure − &( , )V m m1 2  are positive 
definite:
ωZ < 0 or ωZ  > D3t/D4t                                 (32.a)
D11 > 0                                  (32.b)

According to the Liapunov instability theorem, 
equations (32.a) and (32.b) are the condition sufficient 
for the unstable system. From the previous result, we 
can obtain conditions for sufficient of stability and 
instability of the motion ),,(),,( 000 II θθθθ && = .

4. SINGULAR PERTURBATION MODEL
To facilitate the analysis, in the interest of model 

simplification, we usually neglect these small physical 
parameters to reduce the order of this model. Singular 
perturbations are used to simplify the model and to 
provide tools for improving oversimplified models 
when the original full order model satisfies the some 
assumptions [11]. To obtain the standard singular 
perturbation model, let us define the variables
p x p T y q T D zm m1 2

2
2= = =, , ( ) , t t Tm→ / ,

)/( 725115 DDDDDTm += , T D L Re = =1 5/ / , 

ε = T Te m/ ,
 and rewrite the state equation (4) as
&p p1 2= ,

)(2sin)(2/1sin)( 1
2

413202 tptaptaqpap XZZ ωωω && −+−+−= ,
ε &q q a p a p= − − −1 1 2 2 ,
or  in the compact form
& ( , , , )
& ( , , , )

p f t p q
q g t p q
=

=
0

0

ε
ε ε                          (33)

where
p p p f f f= =[ , ], [ , ]1 2 0 01 02 , a D Tm0 1= , 
a D D T Dm1 2 6

2
5= / , a D D T Dm2 2 7 5= / , 

a D Tm3 3
2= , a D Tm4 4

2= .
We assume that ε << 1. This assumption means that 
the mechanical time constant Tm is sufficiently larger 
than the electrical time constant Te. By using the 
singular perturbation theory [12] to consider the 
singularly perturbed system (33), at ε = 0, the slow 
manifold is
q h t p a p a p= = − −( , ) 1 1 2 2 .

The corresponding slow model, & ( , , ( , ), )p f t p h t p= 0 0 ,
&p p1 2= ,

XZZ ptaptapaapap ωωω && −+−+−−= 1
2

413220112 2sin)(2/1sin)()( ,
(34)

has an exponentially stable motion
))(),((),( 101011 tptppp && =  when the following 

condition is held:
ω ω ωZ Z Zt1 2< <( )                          (35)
where

)2/())/(4()2/()4( 45642
2
33441

2
331 ttttttttZ DDDDDDDaaaaa +−=+−=ω ,

)2/())/(4()2/()4( 45642
2
33441

2
332 ttttttttZ DDDDDDDaaaaa ++=++=ω

and D4t > 0, i.e., -π/4 < θ0 < π/4, D3t=D3cos(θ0), 
D4t=D4cos(2θ0).
which can be derived by the same form of Liapunov 
functions as reference [4]. The origin of the 
corresponding boundary-layer system
d
d

g t p h t p
γ
τ

γ γ= + = −0 0( , , ( , ), ) (36)

is exponentially stable uniformly in (t, p). Since f0 and 
g0 of equation (33) also satisfy the conditions of 
Appendix (I), we conclude that the origin of the full 
singularly perturbed system (33) is exponentially stable 
for sufficiently small ε. Thus, the necessary and 
sufficient condition for asymptotic stability is the 
equation (35).

From Sections 3 and 4 analyses, the condition (25) 
sufficient for asymptotical stability of Section 3 are 
covered by that (35) of Section 4, i.e.,

2
43

1 )35.(
)25.(

)(
/)(0

Z
Z

ttZ
Z Eq

Eq
t

DDt
ω

ω
ω

ω <






 <<

< ,

The result of Section 4 has larger stability region than 
that of Section 3. In Section 3, a three-dimensional 
dynamic system is considered. In Section 4, we 
consider the case in which the mechanical time constant 
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is sufficiently larger than the electrical time constant. 
Thus the system can be reduced to a two-dimensional 
system by singular perturbations which simply the order 
of the model and provide tools for improving 
oversimplified models.

四、Numer ical Simulations and Discussion

In this section, examples are carried out to 
examine the various forms of dynamic behavior of the 
system (4) for the previous analyses by numerical 
simulation techniques. The parameters of the cases are 
shown in the Appendix (II).

In section 3.1, the stability condition (10) for the 
nonlinear autonomous system is derived and the 
numerical simulations of the autonomous system (5) 
near the double-zero degenerate point are analyzed. The 
double-zero eigenvalues with the third eigenvalue 
λ3= –165 of the system and the stability boundary of the 
uncertain constant angular velocity ωZC are obtained 
corresponding the double-zero degenerate point (D2, Q) 
= (388.889,3888.89) or (D1, Q) = (140,3888.89) 
depicted in figure 2 and 8. There exists at least one zero 
eigenvalue of the system at Q=e6, the maximum 
eigenvalue that is equal to zero is presented by the solid 
line and the stability boundary of the uncertain constant 
angular velocity ωZC corresponding Q=e6 are obtained 
as shown in figure 3 and 9. A pair of pure imaginary
eigenvalues exist corresponding the solid line of Q=e3

and the stability boundary of the uncertain constant 
angular velocity ωZC corresponding Q=e3 are obtained 
in figure 4 and 10. Stability regions of the autonomous 
system (5) near the double-zero degenerate point are 
obtained as shown in figure 5 and 11 when both the 
inequalities conditions Q < e6 and Q < e3 are satisfied. 
The time history trajectories of the perturbed motion 
that converge to the origin from the initial state (x1, x2, 
x3)=(0.1,0,0) are plotted in figures 6(b)-(c) for ‘b’ and 
‘c’ points within stability region in figure 5. These 
systems are local asymptotical stable. On the other hand, 
figures 6(a) and (d) show that the trajectories move far 
away from the origin to another fixed point and limit 
cycle, respectively, for ‘a’ and ‘d’ points beyond 
stability region in figure 5. This means that the systems 
are unstable. Similarly, the phase trajectories 
corresponding figure 6 are present as shown in figure 7. 
In figures 12–13, the time histories and phase 
trajectories for stability and instability also are observed 
for D1-Q parameter plane in figure 11.

From stability analyses of the nonautonomous 
system, in Section 3.2 and 4, the sufficient condition 
(25) for stability are covered by condition (35) and the 
latter must satisfy the condition in which the 
mechanical time constant is sufficiently larger than the 
electrical time constant. Then those are very close. 
When the parameters of the gyro satisfy the stability 
condition, i.e., ω ω ωZ Z Z1 2< < , the motion is 
asymptotically stable. 

For the case )(tXω&  is time-varying function but 
small, the solution of the dynamic system can be 
assumed zero. In the parameters D1=1, D2=10, we have 
the limits ωZ1 = 0, ωZ2 = 2000 for the stability condition 
(25), and the limits ωZ1 = -0.05, ωZ2 = 2000.05 for the 
stability condition (35). When ωZ(t) varies between ωZ1 

and ωZ2 the gimbal motion is asymptotically stable. The 
case tt ZCZ ωνωω sin)( += oscillating near the 
stability boundary ωZ2 is studied by numerical 
simulation of the system (4) as shown in figures 14-15.
In figure 14(a)-(b), the trajectories of the perturbed 
motion asymptotically converges to the origin from the 
initial state (x1, x2, x3)=(0.1,0,0) when ωZ(t) oscillates 
between ωZ1 and ωZ2. The quasi-periodic trajectory is 
restricted to an annular-like region of the state space 
and the corresponding Poincaré map points fill in an 
elliptically shaped closed curve for ωZC = 2000,ν=0.415
at the fixed driving frequency ω  = 30 in Figure 14 (c) 
and (d), respectively. A limit cycle of period-T plotted 
in phase plane for ν=1.25 as shown in figure 15(a). 
From figure 15(b)-(d), the time history, phase portraits 
and Poincaré maps exhibit the chaotic motion of the 
system for ν=1.31. 

6. CONCLUSIONS
An analysis is presented of a single-axis rate 

gyro with torque control in vibratory situation. . For 
the autonomous case in which ωZ is steady, both 
stability and degeneracy conditions of the fixed point 
were derived by the Routh-Hurwitz criterion in section 
3.1. For the nonautonomous case in which ωZ(t)
and )(tXω& are time-varying, the differential equation of 
motion contains explicit functions of time as coefficient. 
It is more difficult to find the Liapunov function 
candidate than that of the autonomous system by using 
the Liapunov direct method. The conditions sufficient 
for asymptotic stability and instability of motion were 
obtained in section 3.2. In section 4, the electric time 
constant is much smaller than the mechanical time 
constant is assumed. Then modeling this physical 
system in the singularly perturbed form can be found. 
The stability of a full singular perturbed system from 
the reduced and boundary-layer systems was studied by 
the Liapunov direct method for sufficiently small ε. In 
this paper, the model considered here provides not only 
conditions sufficient for asymptotic stability for design 
but also the existence of periodic, quasiperiodic and 
chaotic motions of the system. Finally, the occurrence 
and nature of chaotic attractors were studied by 
evaluating the time history, phase plane and Poincaré 
maps
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APPENDIX (I)
The stability analysis that describes a procedure for 

constructing Liapunov functions for full singularly 
perturbed system as follows [12]:

Consider the singularly perturbed nonautonomous 
system
& ( , , , )
& ( , , , )

x f t x z
z g t x z
=
=

ε
ε ε (I1)

Assume that the following assumptions are satisfied for 
all

( , , ) [ , ) [ , ]t x Brε ε∈ ∞ × ×0 0 0

(1) f t and g t( , , , ) ( , , , )0 0 0 0 0 0ε ε= = .
(2) The equation 0 0= g t x z( , , , )  has an isolated root 
z h t x= ( , )  such that h t x( , ) = 0 .
(3) The functions f, g and h and their partial derivatives 

up to order 2 are bounded for z - h(t, x) ∈ Bρ.

(4) The origin of the reduced system 
& ( , , ( , ), )x f t x h t x= 0  is exponentially stable.
(5) The origin of the boundary-layer system 

dy
d

g t x y h t x
τ

= +( , , ( , ), )0  is exponentially 

uniformly stable in (t, x).
Then there exists �* > 0 such that, for all � < �*, the 

origin of (I1) is exponentially stable.

APPENDIX (II)
The values of gyro parameters:

( ) , . ,A A dyne cm s Cn dyne cm s C dyneg R d+ = ⋅ ⋅ = × ⋅ ⋅ =54 108 10 75602 4
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Figure 1. The feedback system (a) The rate gyro, (b) The block 
diagram.

387.5 388 388.5 389 389.5 390
3887

3888

3889

3890
(a)

Q

(D2,Q): (388.889,3888.89)

387.5 388 388.5 389 389.5 390
-200

-100

0
(b)

E
ig

en
va

lu
es eig1: 0   

eig2: 0   
eig3: -165

387.5 388 388.5 389 389.5 390
0

2000

4000
(c)

D2

S
ta

bi
lit

y 
R

eg
io

n

S.B.1: 2001.94
S.B.2: -1.94  

Figure 2. Stability analysis of the autonomous system (5) for the 
system parameters (D2, Q) = (388.889,3888.89); (a) the double-zero 
degeneracy in this system, (b) double-zero eigenvalues with the 
third eigenvalue λ3= –165, (c) the stability boundary of the uncertain 
constant angular velocity ωZC.
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Figure 3. Stability analysis of the autonomous system (5) near the 
double-zero degenerate point (D2, Q) = (388.889,3888.89); (a) one 
zero eigenvalue at Q=e6, (b) two maximum eigenvalues of the 
system corresponding Q=e6., (c) the stability boundary of the 
uncertain constant angular velocity ωZC corresponding Q=e6.
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Figure 4. Stability analysis of the autonomous system (5) near the 
double-zero degenerate point (D2, Q) = (388.889,3888.89); (a) one 
eigenvalue with zero real part at Q=e3, (b) a pair of pure imaginary
eigenvalues corresponding Q=e3, (c) the stability boundary of the 
uncertain constant angular velocity ωZC corresponding Q=e3.
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Figure 5. Stability region of the autonomous system (5) near the 
double-zero degenerate point (D2, Q) = (388.889,3888.89).
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Figure 6. The time histories of the autonomous system (5) near the 
double-zero degenerate point (D2, Q) = (388.889,3888.89); (a) ‘a’
point (D2, Q) = (388,3884), (b) ‘b’ point (D2, Q) = (388,3878), (c) 
‘c’ point (D2, Q) = (390,3886), (d) ‘d’ point (D2, Q) = (390,3892) in 
figure 5.
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Figure 7. The phase trajectories of the autonomous system (5) near 
the double-zero degenerate point (D2, Q) = (388.889,3888.89); (a) 
‘a’point (D2, Q) = (388,3884), (b) ‘b’ point (D2, Q) = (388,3878), (c) 
‘c’ point (D2, Q) = (390,3886), (d) ‘d’ point (D2, Q) = (390,3892) in 
figure 5.
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Figure 8. Stability analysis of the autonomous system (5) for the 
system parameters (D1, Q) = (140,3888.89); (a) the double-zero 
degeneracy in this system, (b) double-zero eigenvalues with the 
third eigenvalue λ3= –165, (c) the stability boundary of the uncertain 
constant angular velocity ωZC.
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Figure 9. Stability analysis of the autonomous system (5) near the 
double-zero degenerate point (D1, Q) = (140,3888.89); (a) one zero 
eigenvalue at Q=e6, (b) two maximum eigenvalues of the system
corresponding Q=e6, (c) the stability boundary of the uncertain 
constant angular velocity ωZC corresponding Q=e6.
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Figure 10. Stability analysis of the autonomous system (5) near the 
double-zero degenerate point (D1, Q) = (140,3888.89); (a) one 
eigenvalue with zero real part at Q=e3, (b) a pair of pure imaginary
eigenvalues corresponding Q=e3, (c) the stability boundary of the 
uncertain constant angular velocity ωZC corresponding Q=e3.
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Figure 11. Stability region of the autonomous system (5) near the 
double-zero degenerate point (D1, Q) = (140,3888.89).
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Figure 12. The time histories of the autonomous system (5) near the 
double-zero degenerate point (D1, Q) = (140,3888.89); (a) ‘a’ point
(D1, Q) = (139,3880), (b) ‘b’ point (D1, Q) = (139,3868), (c) ‘c’
point (D1, Q) = (141,3878), (d) ‘d’ point (D1, Q) = (141,3898) in 
figure 11.
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Figure 13. The phase trajectories of the autonomous system (5) near 
the double-zero degenerate point (D1, Q) = (140,3888.89); (a) ‘a’
point (D1, Q) = (139,3880), (b) ‘b’ point (D1, Q) = (139,3868), (c) 
‘c’ point (D1, Q) = (141,3878), (d) ‘d’ point (D1, Q) = (141,3898) in 
figure 11.
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Figure 14. The numerical simulation of the nonautonomous system 
(4); (a) the time history, (b) the phase trajectory for ωZ(t) = 
1999+0.415sin(30t); (c) the phase trajectory, (d) Poincaré map for 
ωZ(t) = 2000+0.415sin(30t).
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Figure 15. The numerical simulation of the nonautonomous system 
(4); (a) the phase trajectory for ωZ(t) = 2000+1.25sin(30t); (b) the 
time history,  (c) the phase trajectory, (d) Poincaré map for ωZ(t) = 
2000+1.31sin(30t).
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