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Abstract

An anaysis of stability and chaotic dynamics is
presented of a single-axis rate gyro with torque control in
vibratory situation. For the autonomous case in which the
vehicle undergoes a steady rotation, the necessary and
sufficient conditions for stability of the system were
provided by Routh-Hurwitz theory. Also, the
degeneracy conditions of the nonhyperbolic point were
derived. The stability of the nonlinear nonautonomous
system was investigated by Liapunov stability and
instability theorems. As the electrical time constant is
much smaller than the mechanical time constant, the
singularly perturbed system was obtained by the
singular perturbation theory. The Liapunov stability of
this system by studying the reduced and boundary-layer
systems was also analyzed. The numerical ssimulations
were performed to verify the analytical results. The
stability regions of the autonomous system were
obtained in parametric diagrams. For the
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nonautonomous case in which wLf) oscillates near
stability boundary, periodic, quasiperiodic and chaotic
motions were demonstrated by using time history,
phase plane and Poincaré maps.

Keywords: Rate Gyro, Bifurcation, Chaos

- ~ Introduction

Thefield of application of gyroscopes iswidespread,
such as in the navigation and control system, owing to
its digtinctive property. Here, a single-axis rate gyro is
used for the measurement of angular velocity in
spinning space vehicles. For all applications, it is a
critical problem to show the stability of maotion of the
gyro, both theoretically and practically.

Several interesting problems have been studied
previoudy in the analysis of motion of the gimbal of
rate gyros in spinning vehicles [1-4]. For the case in
which [J7is uncertain and constant, using the Liapunov
approach, conditions for global and local asymptotic
stability of the gyro in spinning vehicles have been
obtained [1]. The motion of a single-axis rate gyro in
consideration of the angular velocity of vehicle about
its spin axis and the angular acceleration of the vehicle
about its output axis has been examined for small
rotation [J of the gimbal [2-3]. The stability of a rate
gyro mounted on a vehicle, which has a time-varying
angular velocity about its spin of the gyro, is studied by
the Liapunov direct method [4]. All of them are
two-dimensional systems. An analysis of stability and
chaotic dynamics is presented of a rate gyro with
feedback control mounted on a space vehicle that is
spinning with uncertain angular velocity [7Af) about its
spin of the gyro [5]. This system is a three-dimensional
nonlinear one.

A nonlinear system can also exhibit complicated steady
state behaviors referred as to chaos in some parametric
space [6]. The chaotic attractor so called “deterministic
chaos’ that was discovered by Lorenz in the numerical
study of meteorology. Chaotic motions whose time
histories have a sendtive dependence on initia



conditions occur when some nonlinearities exist [6-10].
There are many routes to chaos in dissipative systems.
Three prominent routes to chaos have been explored,
including period doubling, intermittency, and
Quasiperiodic routes, and related to period doubling,
saddle node, and Hopf bifurcations respectively [6-8].
In gyroscopic systems, the dynamics of gyros aso
exhibit chaotic behavior. In this paper, the
parametrically excited system is studied and exhibits
the nonlinear phenomena including the existence of
periodic, quasiperiodic and chaotic motions of the
system.
Singular perturbations, traditional efficient tools for
determining physically meaningful subsystems, are
developing into systematic approach to multi-time
dynamic systems. These methods applied in power
systems and Markov chains are used to decompose the
dynamic systems into reduced (dow) and
boundary-layer (fast) systems [11-12]. The singular
perturbation method is also used to derived the special
form of the gyro system.

In this paper, the stability and chaotic dynamics of
a single-axis rate gyro with torque control in
vibratory situation are studied. The controller of the
system is modeled by the first order dynamic with a
time constant of O(1) so that the feedback control
system is a three-dimensional one. For the case in
which [J; is uncertain and constant, the stability
conditions and bifurcation surfaces of the system were
derived by Routh-Hurwitz theory and local bifurcation
analysis. For the nonlinear nonautonomous system, the
stability of the feedback control system will be obtained
by using the Liapunov direct method. When the time
constant of controller is much smaller than the
mechanical time one, the singularly perturbed system is
obtained by singular perturbation theory. The Liapunov
stability of this system is also analyzed by studying the
reduced and boundary-layer systems. Findly, the
degeneracy conditions of the system are presented in
parametric planes by numerical simulation. The
numerical results of the perturbation of an uncertain
angular velocity undergoing small harmonic excitation
are carried out to examine the various forms of dynamic
behavior by using the time history, phase plane,
Poincaré maps.

= ~ Equationsof Motion

We consider the model of a single-rate gyro mounted
on a space vehicle as shown in figure 1. The gimbal can
turn about output X axis with rotational angle g .

Motion about this axis is resisted by damping torque
defined by fd(d). Using Largrange's equation, the
differential equation for the output deflection angle g of

a rate gyro with feedback control was derived as
followq[13]:

(A-A)g+1Q+CrincogHisi | HAB- G) (cos o
+usig) (ysi g Wcog HAHANY =T,

where
Cn,=Qy - w,Sing +w,cosq) = cons.,
fd(d) =g + g *+Ya+ 1,q", r : odd number,
1>0,and f,(q) g >0.

Wy, Wy andw; denote the angular velocity
components of the platform along output axis X, input
axis Y, and normal axis Z, respectively. AL A (=B), C
and A, B, C, denote the moments of inertia of
rotor and gimbal, respectively, about the gimbal axes x,
h, z. T.isthe control-motor torque along the output axis
of the system to balance the corresponding gyroscopic
torque. The torque and electric current of control-motor
can be modeled by the following relationship:

T.= K, . (2)

LI+ R =K, (q,- q)- Kq. 3
where electromotive force proportional to the difference
between the prescribed motion g,(f) and the

rotational angle g, that is u= K,(q, - q), is applied
to the control-motor. /, R L, and K|, are the current,
resistance, inductance, and back-electromotive constant
of the control-motor; K denotes the torque constant
of the control-motor.

Equations (1)-(3) thus represent a feedback
control system in which position feedback is applied to
the gyro motion. The prescribed motion of the gyro is
desired to be fixed at the origin, i.e. g, =0, in which
the relationship of the output angle g proportional to the
input angular velocity W, is held. Thus, it is very
important to anayze the stability of the measuring
origin of a rate gyro system mounted in a wobbling
space vehicle, because the more precise andysis for the
system, the more reliability for the guidance.

We are interested in the nonlinear behavior of
dynamical motion when the vehicle undergoes
uncertain angular velocity wLf) about the spin axis
(Z-axis), acceleration W, (f) about the output axis
(X-axis), and the angular velocity about OY is zero, i.e.,
w, =0. Now the feedback control system is studied in
the following form
X=Y,
y=-D,())+ D,z- D,w,(t)sin x+1/2D,w3(t)sin2x- W,
z=- D,z- D;x- Dy, 4)
where
X=q,y=q,z=1 D,(q) = ,@)/(A+ Ay)
D,=K;I(A+A)), Dy=Cn,l(A+ A),
D,=(A+B,- C)I(A+A) ., D=RIL ,
Ds=K,IL, D,=K,/L.

In this section, the stability of both autonomous
system and nonautonomous system are discussed by



diginct methods. The stability of the autonomous
system is anadyzed to obtain the necessary and
sufficient conditions for locally asymptotical stable
motion at the fixed point by Routh-Hurwitz criterion. In
addition, the Liapunov direct method [13] is used to
obtain the conditions sufficient for asymptotical
stability and instability of motion of the feedback
control system.

3.1 The stability of the nonlinear autonomous system

For the case when W, = 0 and wy=wsc=const.,
this system is autonomous. One stationary point of the
nonlinear autonomous system is the origin (X, y, 2=(0,
0, 0). Let the disturbed motion as x=0+x;, )=0+x,
Z=0+x3, the equations for disturbances are as.
%= X%,
X, == DX, + Dy Xg - DyWyex, + Dywiex,

- /-’(ch)xl3 - Dlzxg +O(X11X2)5

X3 =- D5X3' DBXL_ D7X |
where Dllzlll(A‘l‘Ag), D=
'D3 Wzd 6+2D4 WZCZ/ 3.
The stability analysis of the origin of the autonomous
system will be studied by the Routh-Hurwitz criterion
asfollows.
First, we obtain the Jacobian matrix J at the origin of

the system (5) in the form of
_é0 1 0 u

(5)

H(A+A), Hwz )=

J= 4, O= -DaWot DaWsll, 6
go - D, DZHQ: 3WzcTLaWzc (6)
gDs 'D7 - sé

and the characteristic equation of Jin the form of
A *+(Ds+Dy1) A *+(D2Ds-Q+ Dy Ds) A -QDs

+DsD,=0 or 1 %+a 1 *+a, A +a=0. 7)
The Hurwitz matrix H for the above polynomial is

& 1 00
H=% a ay ®)
g0 0 ag

The necessary and sufficient conditions for al the roots
of characteristic equation (7) to have negative rea parts
are provided by the Routh-Hurwitz criterion, i.e., the
principle minors of the Hurwitz matrix H must all be
positive. So, the stability conditions are obtained as
follows

Ds+ D11>0, (9.9
DsD,D++Dyy D5+ DllDZDTDllQ"'DllZDS' DsD>>0, i.e,
e W+ Wecte>0, (9.b)
'QD5+D6D2>0, i.e., 94WZC2+Q',W20+%>0, (90)
where e=6=-0,<0, &=6=Ds, 6=DsD,/ D,
&=(DsD,D+ Dy Ds*+Dyy D, Do+ Diy* Ds- DsD5)/ Dy
The above stability conditions can be rewritten as
Waer < Wae < Wae, (10.9)
where
Woer=[-€-(&460rin) *1/(261) =] Ds-(D5*-4Dsfin) 1/ (2
Dy), (10.b)

Waco=[ Ds+(D5>ADuprin) 1/ (2Ds), prir=Mir(&s,65). (10.)
That al the roots of the characteristic polynomia (7)

of the Jacobian matrix J have negative read parts, i.e.,

the motion of the linearized autonomous system is

asymptotically stable at the fixed point. Alternatively,

the system possesses critical behavior when Jacobian

matrix J contains the eigenvalues with zero real partsin

the following bifurcation surfaces:

1.There exists one zero eigenvalue (I ;=0) of this
linearized system for the system parameter
Q=D6D2/D5, i.€, Wr=Wszy OF Wz, ON Stablllty
boundary, pnn=6. The residual eigenvalues are
| 25={ -(D11+ D) [ (D1y+Ds)*-4(D.D7-Q+ D11 Ds)] ]Jz} 12,

2.There exists a pair of pure imaginary eigenvalues
(I 1 o=%jwp) of this linearized system for the system
parameter
Q=(DsD>D++ D11 Ds*+ D11 D, D+ D1y *Ds-Ds Do) Dy, i €,
Woc=Wzc1 o  Wzc=Wzc,  Prin=6.,  Where
VVO:('Dll(DSDZD7+D11D52'DeDz))lllell is a red
number, i.e, D,>DyDs(Ds -DsD;). The residua
eigenvalueis-(Dy+Ds);

3.There exists a double zero eigenvalues (I 1,=0,0) for
(a) the system parameter Q=D11D:D4/(Ds -DsD-) and
D=Di,Ds’/(Ds -DsD5), the residual eigenvalue is
-(D11+Ds); (b) the system parameter Q=DsD,/ Ds and
D11=D2(D6 -D5D7)/ D52, the residual e|genva| ueisstill
in the form of -(Dy+Ds) but the value adapts for
varying the system parameter D,

where Q=-DsWsc+DyWsc, Din=h/ (A+A),
Di=KA(A+A).

3.2 The stahility of the nonautonomous system
For the case when W, (f) and ws(f) are time-varying

function, the syetem is the nonautonomous system and
the motion of the system (4) can be solved analytically,
approximately or numerically as

x=q,(),y=q,(1),z=1,() , which satisfies the
following equation:

G+RQ+Dusy- VW Sl =0),  (11)
Iy +Dslo = Do D1 (1Lb)
Let the disturbed motion be

x=q0+x,y=qh+x%.2=l,O+x . Where xi, X, X are
deviations from their respective nominal conditions.
The differential equation (4) for the disturbancesis

X =%,

% =- D6+ D~ D)X+ DMEDX - h(wl§)X
- DX - Hm(0)X +ax, %)

X=-Dx- Dyx - DX,
whereDz=D;c0 qu(t)), Ds=Dscos2qu(t)),
Bo(WAL))=DaiA1)/2- Do (t), WiA1))=
'DgtWZ(t)/6+ZD4[WZZ(t)/3

The stability of the maotion of the above system (12) is
investigated by the Liapunov direct method. Now we
take the Liapunov function of quadratic forms:
\/(/ 1,/ 2)=/ 1X12/ 2+/ 2X1X2+X22/ 2+/ 2D2X32/ (ZDG),

(12)

(13)



where /; and / , are undertermined positive constants.
There exists a number of Liapunov function candidates
varied with the proper value of /4, / 5, in which each of
Liapunov candidates can give the conditions sufficient
for stability. By choosing a number of /1, /, properly,
we can obtain the conditions sufficient for asymptotical
stability of motion of the feedback control system. We
have the negative time derivative of Vthrough equation
(12) as

- V(1 1,1,) =1 o DawAt)-Daw (D] X*+H/ 2Dua+ DA -
/1 D4th (D1xX6+(Durl 2)%°+(I 2D~ Do) xo X+ | 2DoXs™+

W (14
where Dg=D,D+/Ds, De=D,Ds/Ds, and W4 represents
higher order terms.

Since - V' contains time explicitly, we must find a
function W that does not contain time explicitly such
that - V3 W. Wetake Was:

WEI Dotl 3)x*+(I 2Du+Drl 1#1 3) X%+ 2%6°+(I 2Dg-D
2) X Xst] 65 (15)
where /3 and /4 are undertermined positive constants.
By Sylvester’s theorem[13], Wis positive definite if
/,>0, (16.9)
3>-D2= - Ki(A+A), (16.b)

(O, + D+ ) 1D+ ) - (D - DY, <1, <
(B, + D+ )+ 1 (D+ ) - (B~ DY,

(16.0)
| 4> (D1 ,D5)%(41 5) > 0, (16.d)
are satisfied. Furthermore,
- V -WEI o[-Dot(DaWr | 5)-Dy1 X °+[- Dot (D | 5)-
DaW7] X6+ Di-21 2)%:°+(Dol -1 8) 36"+ W (17)
where W represents the terms of higher degree. If the

following inequalities are held, then - V- W3 0 (=0

only when x=0x=0x=C), ie, -V-W is

positive definite. So - Vis positive definite:

D4>0,i.e,-pld<q<pld

(B~ - 4D(D+))@R)<w <D+ - AR(B+))/eD)
(18.9)

l,<D:I(4D,,)- D, (18.b)

Di>2/,>0 (18.0)

4] (D=2l ))-[-Ds+(DaWrl 5)-DywF] > 0,i.e., (18.d)

If /3 < Dszt/4D4t -D,- 4/2(011' 2/2) , then

w, <(D, - \/DZ - 4D, [(D, +1,)+41 ,(D,- 2 ,)])/(2D,,) or

D2 - AD,[(D, +1,)+41 (D, - 21,)])/(2D,) -(18.€)
If /,>D.1(4D,,)- D,- 4l ,(D, - 2l ,),then
w, 1 A A:real number. (18.)
[ 4<Dol ; (18.9)
By Sylvester’s theorem, the sufficient condition for the
positive definiteness of Vis
I,>17>0.
From equations (16.c), (16.d) and (19), we have

w, >(D,

(19)

I, <l <Il,, where

1, =2 D, *+D+ 1D+ )W S - (@ DALY
(20.8)

1, =0+ D+ 1D+ )W - (- DY, .
(20.b)

From equations (16.b) and (18.c), we have

I > 2/§+D2+/3+\//2(D2+/3)[4/2/4- (D ,- D)AII, >/ 22-
(21)

So the parameter /; can be chosen in the domain

constrained by the above inequalities. Similarly by the

former inequalities (16.b), (18.b), (18.€) and (18.f), we

know that / 3 can be chosen if

- D, < /3 < D32t/4D4t - b, (22)

is held. From equations (16.d) and (18.g), the parameter

! 4, d'so can be chosen as:

(D, - D8/2)2/(4/2) <l,<Dyl,,ie, (23)

the following inequalities are held

l,>D,ID, forDy<2,D,, (24.9)

l,>D,[(20,) for D, =2,/ D,, (24.b)

D,/(2yD, + D)< /,<D,l(D;- 2, D) for
(24.0)

From equations (18.8), (18.c), (18.€), and (18.f) by

properly selecting a suitable /, of equation (24), and a

number of / ; of equation (22), we can get the following

conditions that assure both V/(/,,/,) and- V(I,,1,)

are positive definite:

Wz 1=0 <Wz < Wz ,=D3l/ Dy, and

D,>2l,,

/ , can be taken from equation (24).
According to the Liapunov asymptotical theorem,

the equation (25) is the condition sufficient for stability

of the system, and the motion (q,g,/) = (qy.0./,) is

asymptotically stable.

The conditions sufficient for instability of motion
of the feedback control system are considered by using
the Liapunov instability theorem. We construct the
Liapunov function as
V(mh, mp) = -muxi*12-my X, X+ %712+ mpDy %5°1(2Ds)

(26)
where my and m, are undetermined positive constants.
Then we have

- V(m, my) = -my DawA)- D (D] X
+[ szll"‘D&Wz(f)‘*‘ml Daws (t)]X1X2+2f772D2X1X3+(D11+
m) X%’ +(sz8'D2)X2X3+sz9X3 + W (27)
where W4 represents the terms of higher degree.

Since - V' contains time explicitly, we must find a
function W that does not contain time explicitly such
that - V3 W. Wetake Was:

W= -mp€X,°+(€ -mpDu+ M) XX+ Mo’
+2mp Dy +(IMsDg-Dy) XoXet Me6”

(259)
(25b)

(28)

\7/



where 0>¢€ >-¥ . By Sylvester's theorem, we
know that Wis positive definite if
m, <m <m,, where

m =D,m,- € -2mn- € ,

m,=D,m,- e +2my- e (29.9)
m, =D,m - € + D,m(D,m, - D,)I m,
m,={m(DEm+e m)(Om - D) - 4mmlint .  (29.b)

m>0

0 < my < (Dsmy-D)?(4m) , for 0> € > -mpD>4 my(29.d)
ms > (Dsmy-D2)I(4m) , for € < -mpDyImy (29.¢)
are satisfied. Furthermore,

- V -W= my(€-Dawizt Daw?) X +(-€-DaWr D) X1
+011X22+(sz9"773)X32- (30)
If the following inequalities hold, then - V- ws 0,i.e.,
- V ispositive definite:

Dy4>0,i.e,-pld< q <pl4,

w<(D,- G- 4De)I@D) oy >(D,+ - 4De)/eD,),  (31.8)
Du>0 (31.b)

(B-(G-ReARNmIeR)<w<D+ G- Qe 1QRm)ID),
(31.0)

my < mDs. (31.d)

From equations (29.8), and (29.b), if m, < m,, < my are

satisfied, i.e, (0,(D5 - 2v- € )/(D,D,) nex < M <

(D +2V- € )I(D,D,) , the parameter m; can be
chosen. Similarly by the former inequalities (29.d),
(29.¢) and (31.d), we know that rmy can be selected.
Also from equations (31.a), (31.b), and (31l.c), by
properly selecting a number of €, we can get the
conditions that assure - V/(m,m,) are positive
definite:
wy<0or wy > Ds3/Dy (32.9)
D; >0 (32.b)
According to the Liapunov instability theorem,
equations (32.a) and (32.b) are the condition sufficient
for the unstable system. From the previous result, we
can obtain conditions for sufficient of stability and

instability of themotion (§.,q,/) = (G, /) -

4. SSINGULAR PERTURBATION MODEL

To facilitate the analysis, in the interest of model
simplification, we usualy neglect these small physical
parameters to reduce the order of this model. Singular
perturbations are used to simplify the model and to
provide tools for improving oversmplified models
when the original full order model satisfies the some
assumptions [11]. To obtain the standard singular
perturbation model, let us define the variables

p=xp=Ty q=(T:D)z t® t/T,
T,=0/0,0+DD), T,=1/ D=L/ K,

e=TIT_ ,

e m

and rewrite the state equation (4) as

=R,

B =-ap+q- anhsing +1/ 2anE(Hsire - (),
eq=-q- ap- ap,
or in the éBmpadisori < /M, + My, where
p= 1,(t, p.g.e)

eq=g,(t, p.q.e)
where

p=Lp, Pl fo=[1fy, fl, &= Dl'&%Q.C)
& =D,D,T,/ D, a=D,D,T,1D,

& = D37;§, a, = D47;§-
We assume that e <<1. This assumption means that
the mechanical time constant T, is sufficiently larger
than the electrical time constant 7. By using the
singular perturbation theory [12] to consider the
singularly perturbed system (33), a e = O, the dow
manifold is

q=htp) =-ap- ap.
The corresponding slow model, p= f,(t, p,h(t, p),0),
P= P

h=-an- @+a)n- amdsim+V2aWhsireq- v,

(33)

(34)
has an exponentialy stable motion
(P, B) =(po(t), Bo(f)) when the following
condition is held:
WZl < WZ(t) < W22 (35)

where

W =a-4+4a3,)/ea)=0-| 3+400[ID)eR)
W, =&+ 4+444,)/@a,) =0+ 0 +AD0(RI D))/en)

and Dy > O, i.e, -pl4d < q < pl4, Dz=Dscodqp),
D.=Dsco92qp).

which can be derived by the same form of Liapunov
functions as reference [4]. The origin of the
corresponding boundary-layer system

al

gg = g (t,pg +Nt,p).0) =-g

is exponentially stable uniformly in (¢, p). Since f; and
o of equation (33) also satisfy the conditions of
Appendix (1), we conclude that the origin of the full
singularly perturbed system (33) is exponentially stable
for sufficiently small e Thus, the necessary and
sufficient condition for asymptotic stability is the
equation (35).

From Sections 3 and 4 analyses, the condition (25)
sufficient for asymptotical stability of Section 3 are
covered by that (35) of Section 4, i.e.,

10<w,(f) < D,/ D, Eq(25)ii
2L we ey
The result of Section 4 has larger stability region than
that of Section 3. In Section 3, a three-dimensiona
dynamic system is considered. In Section 4, we
consider the case in which the mechanical time constant



is sufficiently larger than the eectrical time constant.
Thus the system can be reduced to a two-dimensional
system by singular perturbations which simply the order
of the model and provide tools for improving
oversimplified models.

7 ~ Numerical Simulations and Discussion

In this section, examples are carried out to
examine the various forms of dynamic behavior of the
system (4) for the previous anayses by numerical
simulation techniques. The parameters of the cases are
shown in the Appendix (I1).

In section 3.1, the stability condition (10) for the
nonlinear autonomous system is derived and the
numerical smulations of the autonomous system (5)
near the double-zero degenerate point are anayzed. The
double-zero eigenvalues with the third eigenvalue
| 3= —165 of the system and the stability boundary of the
uncertain constant angular velocity wy- are obtained
corresponding the double-zero degenerate point (D,, Q)
= (388.889,3888.89) or (D, @ = (140,3888.89)
depicted in figure 2 and 8. There exists at |east one zero
eigenvalue of the system at Q@=&, the maximum
eigenvalue that is equal to zero is presented by the solid
line and the stability boundary of the uncertain constant
angular velocity w;c corresponding @=¢; are obtained
as shown in figure 3 and 9. A pair of pure imaginary
eigenvalues exist corresponding the solid line of Q=é;
and the sability boundary of the uncertain constant
angular velocity w;c corresponding @=e; are obtained
in figure 4 and 10. Stability regions of the autonomous
system (5) near the double-zero degenerate point are
obtained as shown in figure 5 and 11 when both the
inequalities conditions Q < g and Q < & are satisfied.
The time history trgectories of the perturbed motion
that converge to the origin from the initial state (x, %,
X%)=(0.1,0,0) are plotted in figures 6(b)-(c) for ‘b’ and
‘c’ points within stability region in figure 5. These
systems are local asymptotical stable. On the other hand,
figures 6(a) and (d) show that the trgjectories move far
away from the origin to another fixed point and limit
cycle, respectively, for ‘a and ‘d’" points beyond
stability region in figure 5. This means that the systems
are unstable. Similarly, the phase trgjectories
corresponding figure 6 are present as shown in figure 7.
In figures 12-13, the time histories and phase
trajectories for stability and instability also are observed
for D;-Q parameter planein figure 11.

From stability analyses of the nonautonomous
system, in Section 3.2 and 4, the sufficient condition
(25) for stability are covered by condition (35) and the
latter must satisfy the condition in which the
mechanical time constant is sufficiently larger than the
electrical time constant. Then those are very close.
When the parameters of the gyro satisfy the stability
condition, i.e, W, <W,<W,, , the motion is
asymptotically stable.

For the case W, (f) istime-varying function but

small, the solution of the dynamic system can be
assumed zero. In the parameters D=1, D,=10, we have
the limits ug; = 0, ug, = 2000 for the stability condition
(25), and the limits uz; = -0.05, ws, = 2000.05 for the
stability condition (35). When wx(t) varies between wgg
and s, the gimbal motion is asymptotically stable. The
case W,(f)=wW,.+nsinwt oscillating near the

stability boundary ws, is studied by numerical
simulation of the system (4) as shown in figures 14-15.
In figure 14(a)-(b), the trgectories of the perturbed
motion asymptotically converges to the origin from the
initial state (x, X, %)=(0.1,0,0) when ws(t) oscillates
between wz; and wy,. The quasi-periodic trgectory is
restricted to an annular-like region of the state space
and the corresponding Poincaré map points fill in an
elliptically shaped closed curve for usc = 2000,1=0.415
at the fixed driving frequency w = 30in Figure 14 (c)
and (d), respectively. A limit cycle of period-T plotted
in phase plane for n=1.25 as shown in figure 15(a).
From figure 15(b)-(d), the time history, phase portraits
and Poincaré maps exhibit the chaotic motion of the
system for n=1.31.

6. CONCLUSIONS
An analysis is presented of a single-axis rate

gyro with torque control in vibratory situation. . For
the autonomous case in which ws is steady, both
stahility and degeneracy conditions of the fixed point
were derived by the Routh-Hurwitz criterion in section
3.1. For the nonautonomous case in which w{)
and W, () are time-varying, the differential equation of
motion contains explicit functions of time as coefficient.
It is more difficult to find the Liapunov function
candidate than that of the autonomous system by using
the Liapunov direct method. The conditions sufficient
for asymptotic stability and instability of motion were
obtained in section 3.2. In section 4, the electric time
constant is much smaller than the mechanical time
constant is assumed. Then modeling this physical
system in the singularly perturbed form can be found.
The stability of a full singular perturbed system from
the reduced and boundary-layer systems was studied by
the Liapunov direct method for sufficiently small e In
this paper, the model considered here provides not only
conditions sufficient for asymptotic stability for design
but also the existence of periodic, quasiperiodic and
chaotic mations of the system. Finally, the occurrence
and nature of chaotic attractors were studied by
evaluating the time history, phase plane and Poincaré
maps
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APPENDIX (1)

The stability analysis that describes a procedure for
constructing Liapunov functions for full singularly
perturbed system as follows[12]:

Consider the singularly perturbed nonautonomous
system

= f(t,x ze)

ez=g(t, x,ze)

Assume that the following assumptions are satisfied for
all
(t,x,e)1 [0¥)” B [0,¢]

(1) f(t,0,0,e) =0and g(t,0,0,e) =0.
(2) The equation 0= g(t, X, z0) has an isolated root
z=h(t,x) suchthat A(t,x) =0.
(3) The functions f, gand hand their partial derivatives

up to order 2 are bounded for z- A(t, ) T B
(4) The origin of the reduced system
X= f(t, x,h(t, x),0) isexponentialy stable.
(5) The origin of the boundary-layer system

a
d—;v = g(t, x, y+ A(t, X),0) is exponentialy
uniformly stablein (¢, X).

Then there exists ~ > 0 such that, for all " the

origin of (11) is exponentially stable.

APPENDIX (I1)
The values of gyro parameters:

(A+ A) =54 dynexcmxs’, Cn, =108" 10" dynexams, C, = 7

G Kk L, O
q—-ié) =136150ahs", Q—@ =3804000>ras’, Q= = =2008),

(A
(AB-Q
(A4

A4
=1 Q=R =254, Q=K [=250waihs’, D=K/ [ =1 Arad

o=

at AmpIifier:Ka}_{ Motor ’_{ Gyro }7‘7

Figure 1. The feedback system (a) The rate gyro, (b) The block
diagram.
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degeneracy in this system, (b) double-zero eigenvalues with the
third eigenvalue / ;= —165, () the stability boundary of the uncertain
constant angular velocity wxc.
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Figure 3. Stahility analysis of the autonomous system (5) near the
double-zero degenerate point (D,, Q) = (388.889,3888.89); (a) one
zero eigenvalue a Q=g;, (b) two maximum eigenvalues of the
system corresponding Q=e;., (c) the stability boundary of
uncertain constant angular velocity wsc corresponding Q=e6.
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Figure 4. Stability analysis of the autonomous system (5) near the

the

double-zero degenerate point (D,, Q) = (388.889,3888.89); (a) one
eigenvalue with zero real part at Q=g;, (b) a pair of pure imaginary
eigenvalues corresponding Q=e;, (C) the stability boundary of the
uncertain constant angular velocity w; corresponding Q=é;.
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Figure 6. The time histories of the autonomous system (5) near the
double-zero degenerate point (D,, Q) = (388.889,3888.89); (a) ‘a
point (D,, Q) = (388,3884), (b) ‘b’ point (D,, Q) = (388,3878), (¢)
‘¢’ point (D,, Q) =(390,3886), (d) ‘d" point (D,, Q) = (390,3892) in

figure 5.
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Figure 7. The phase trgjectories of the autonomous system (5) near
the double-zero degenerate point (D,, Q) = (388.889,3888.89); (a)
‘a point (D,, Q) = (388,3884), (b) ‘b’ point (D,, Q) = (388,3878), (c)
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figure 5.
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Figure 9. Stability analysis of the autonomous system (5) near the
double-zero degenerate point (D;, @) = (140,3888.89); (a) one zero
eigenvalue a Q=g;, (b) two maximum eigenvalues of the system
corresponding @=e;, (¢) the stability boundary of the uncertain
constant angular velocity w;c corresponding @=es.
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Figure 10. Stability analysis of the autonomous system (5) near the
double-zero degenerate point (D;, Q) = (140,3888.89); (a) one
eigenvalue with zero real part at Q=g;, (b) a pair of pure imaginary
eigenvalues corresponding Q=g;, (C) the stability boundary of the
uncertain constant angular velocity w; corresponding Q=és.
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Figure 11. Stability region of the autonomous system (5) near the
double-zero degenerate point (D;, Q) = (140,3888.89).
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Figure 12. The time histories of the autonomous system (5) near the
double-zero degenerate point (D;, Q) = (140,3888.89); (a) ‘a point
(D1, Q) = (139,3880), (b) ‘b’ point (D, @ = (139,3868), (c) ‘C
point (D, Q) = (141,3878), (d) ‘d’ point (D1, @) = (141,3898) in
figure 11.
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Figure 13. The phase trgjectories of the autonomous system (5) near
the double-zero degenerate point (D;, @) = (140,3888.89); (a) ‘&
point (Dy, Q) = (139,3880), (b) ‘b’ point (D, @) = (139,3868), ()
‘¢’ point (D, Q) =(141,3878), (d) ‘d’ point (D;, Q) = (141,3898) in
figure 11.
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Figure 14. The numerical simulation of the nonautonomous system
(4); (@ the time history, (b) the phase trajectory for wy(f) =
1999+0.415sin(301); (c) the phase trajectory, (d) Poincaré map for
wy(f) = 2000+0.4155(301).
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Figure 15. The numerical simulation of the nonautonomous system

(4); (a) the phase trajectory for ws(f) = 2000+1.25sin(30%); (b) the

time history, (c) the phase trajectory, (d) Poincaré map for ws(f) =

2000+1.31s1(309).
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