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The Nonlinear H-infinity Control of Ship Maneuvering
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Abstract

In this project, the design procedure of the robust
nonlinear controller is introduced and applied to the
ship maneuvering problem. First, the open-loop ship
maneuvering performances, such as turning circle and
Zig-zag maneuver, are investigated. Then the robust
nonlinear controller, with the inner-loop nonlinear
H _ controller design by the H _ 1/O linearization and
the outer-loop u -synthesis robust controller, is
proposed to design the ship maneuvering controller.
The simulations of the ship maneuvering for the
course-keeping, turning, and tracking problems are
enclosed to demonstrate the superiority of the
nonlinear H_ controller.

Keywords: nonlinear H  control, ship maneuvering
control, H_ 1/O linearization, u -synthesis

1. Introduction

Asthe linear H,, control theory [1-4] has been
developed for years, the controller designed based on
this theory can provide the plant to reduce the
disturbance from the environment and the closed-loop
system can achieve the performance as expected.

Recently, a much more complicated nonlinear H.,
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problem has also been solved by the concept of
energy dissipation approach [5-8]. The construction of
the controller and the necessary and sufficient
conditions had been derived [5]. Due to the
complication of operating a ship and the uncertainty
disturbance from the environment, the maneuvering
problem of a ship can be treated as a nonlinear H_,

problem. The maneuvering of a ship includes the
following: course keeping, turning, tracking, and
berthing [9-10] can be considered as a nonlinear
problem. As formulated, the state parameters variation
will become the uncertainty of the controlled plant.
Other external uncertainty actually comes from the
hydrodynamic disturbance due to the wind, wave and
current. Accordingly, a ship model is described as a
nonlinear  uncertain  controlled  plant  when
maneuvering. Therefore, the control to the ship
becomes a nonlinear robust problem. Before applying
the proposed nonlinear control techniques, the open-
loop ship maneuvering performances will be
investigated. In the project al ship maneuvering,
except some berthing maneuvers, involves turning
motion, the turning circle and the zig-zag maneuver
trial simulations are provided.

In this project the design procedures of the robust
nonlinear control are proposed, which can be divided
into two steps: the inner-loop nonlinear controller that
achieves input/output (1/O) linearization and the
outer-loop linear robust controller that meets the
tracking, regulation, and robustness requirements [7-
8]. We first choose a linear reference, in which a
convenient choice is the Taylor linearization of the
nonlinear system at the equilibrium point of interest.
Then, a nonlinear H_ controller is designed to
minimize the H_ norm of the difference between the
compensated nonlinear system and the linear
reference model. In the outer-loop controller design,
we start by representing the inner-loop nonlinear
system by the linearized model with an uncertainty
characterized by the H, norm. A u -synthesis [3-4]
problem formulation is then set up to construct a
linear robust controller. The overall controller is the
integration of the inner-loop nonlinear controller and



the outer-loop linear robust controller. Due to the
insufficient applications of nonlinear ship control are
available in the literatures, the proposed design
procedures will be directly employed to the ship
maneuvering control problems. The evaluation of
proposed nonlinear controller is based on three ship
maneuvering cases. course-keeping, turning, and
tracking problems and the simulations for the closed-
loop system are included to demonstrate the
performance of the controller.

2. Ship Maneuvering

In this section, the nonlinear ship model is
introduced and the ship maneuvering performance
trials are investigated.

2.1 Nonlinear Ship Model

Assume the rigid-body ship dynamics are
described by the six degrees of freedom: surge, sway,
heave, pitch, roll, and yaw. For simplicity, pitch and
heave can be ignored due to mild sea wave
environment. The ship motion reference coordinate
systemisshownin Fig. 1 where

X, Ya, Z, - direction of 3 coordinates

o, p : roll angle, roll rate

v,o0 : heading angle, rudder angle
u,v : surge velocity, sway velocity
r : yaw rate

U : instantaneous speed

The nonlinear model adopted in this project is
defined as the following [8,9]:

X=Ax+ f,(X)+B,0
where

x=[v. pr ¢ yI' (1b)
Assume all the states can be measured and hence
the output equation can be represented by

y=[v p r ¢ y] =Cyx @)

(1a)

Fig. 1 Ship motion coordinate system

2.2 Ship Maneuvering Characteristics

In SNAME [11], there described detailed guide
for sea trials for performing ship steering
maneuvering. The standard ship maneuvers can be
used to evaluate the robustness, controllability,
performance, and limitations of the rudder steering
system. Generally, the standard ship maneuvers tests
include Turning Circle, Kempf’s Zig-zag, Pull-out,
Spiral Maneuvers, Stopping Trials, ... etc. Because
these trials shall be tested in real sea environment for
full-scale maneuvering trials, there are a lot of works
involved and factors varying, for example, ship itself,
sea wave, wind, manpower, test equipments. So,
before the full-scale trials, one can perform the
simulations to examine the ship’s steering
maneuvering characteristics. In this project, the
following two trials, turning circle and Zig-zag
maneuver, are simulated.

2.2.1Turning Circle

The test can be used to check the rudder’s
performance during course-changing (or turning)
maneuver. In the trial, the ship is turned over at
maximum speed, 15 knots, and with a rudder angle of
15 degrees to obtain the turning circle. Generally, the
turning path of a ship is characterized by 4 numerical
measures. advance, transfer, tactical diameter, and
steady turning radius. Fig. 2 shows the simulation of
the ship turning circle, in which the above four key
measurements are also defined in the plot. From Fig. 2,
we can find that the advance, transfer, tactical
diameter, and steady turning radius are 862, 277 , 731,
and 382 meters respectively.

From some turning theories [9, 10], we know
that the steady turning radius would be proportional to
the ship length, L, and inversely proportional to the
rudder deflection angle. A highly stable ship requires
more maneuvering effort than a marginally stable one.
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Fig. 2 Simulation of ship turning circle
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2.2.2 Zig-zag M aneuver

Thistest is aso known as the overshoot maneuver.
The purpose of the trial is to check the ability of the



ship’s rudder to control the ship. The typica

procedures for conducting the test are as follows [12]:

(i) The ship is “steadied” on a straight course at a
presel ected speed, say 15 knots.

(i) Deflect the rudder to 10 degree, and hold until the
change of the heading angle 10 degreeis reached.

(ii)At this point deflect the rudder to opposite angle
of 10 degree and hold until the execute change of
the heading angle 10 degrees on the opposite side
isreached

(iv)Repeat (ii) to (iii) until sufficient trial data are
collected and this completes the test.

The Zig-zag Maneuver test ssimulation for the
nonlinear ship model is shown in Fig. 3. In Fig. 3, we
can see the overshoot and the period are computed as
3.4 degrees and 32.1 seconds, which can be used as an
important parameter in the ship control system design
[9,10].
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Fig. 3 Zig-zag maneuver test
3. Nonlinear Ship Maneuvering Control

3.1 TheNonlinear H, Control Problem
Consider the following nonlinear input-affine
generalized plant G:

x=f(x)+9,(x)w+g,(Xu
G :{z=h/(X) + D, (X)u ©)
y= h2 (X) + D21(X)W
where x e R" is the state of the system, ze R™ is
the controlled output, we R™ is the exogenous input
including al commands and disturbances, ue R™

represents the control input, and yeRP? is the

measured output. The problem is to find a nonlinear
controller

K. {é = A &)+ B (©)y @
u=Cy (¢)
such that the closed-loop system is stable and 3

dissipative [7]. The modified nonlinear H ., controller

formulas are introduced in the following theorem [7,
13].

Theorem 3.1 Consider the nonlinear generalized
plant defined in (3) whose linearized model is in the
canonical form [7, 13]. If there exists a controller K
of the form (4) such that the closed-loop system is
stable and y-dissipative, then we have the following:

(1) There exist X(X) and Y, (%) such that the
following Hamilton-Jacobi inequalities:

2XT(X)H () + XT()H{ ()X (X)+Ho(x) <0 (5)

2Y,7 (%) 4 (%) + YT (%) I ()Ys () + I (%) < 0 (6)

are satisfied for all X in the domain of interest
where

H () = f(¥) = g, () E; (X) Dy, ()hy (%)
He(¥) =7 20,0 9] () - 9,(NE; ()93 (%)
Ho () = b ()h,(X) = h{ (X)D1, () E;(X) Dy (X)hy (x)
(7
Ja(x) = f(%,,0) - 9,(%,0) D3 (%,0)E;* (%,,0)h, (%,,0)
Jr(x) =7 20:(x,0)9; (%,0)~7 9,(%,,0)D;,(x,,0)
Jo (%) = (%,,00h, (%,,0) = ¥ *h; (%,,0)E;" (%,,0)h, (%,,0)

B (%,0)D4 (%,0)95 (%,,0) 8
X(X) can be partitioned as
X, (X, X )}

X X) = 1\ A2 9

) |:X2(X1'X2) ©

according to the partition in [7, 13] and Yy (X,)
has a structure as;

Y, (%) }

Y = 11\"M 10

1 (%) [xz(xl,O) (9

(2) Thefunction
Z, (%) =Y. (%) = X1(x.,0) (11)
is the gradient of a positive function in the
neighborhood of the equilibrium point.

(3) A nonlinear y-dissipative H ., controller can be
constructed by the following formulas:

Ac©)= (&) +7?[9.(6) B (£)Dn(8)]
ng(g)X(é)-i- gz(g)CK (g) - BK (g)hz(g)
C (§) =—E* ()92 (§)X(8) + D (&) (&)]

BKl 1
Bk (&) = [B (é )J (12)
where
B (&) = 0 (5)DLEOENED) (133
0,(6,0) = Egﬂ (130)

and By, (&,) satisfies the following equation
Y1 (€)= X, (£,,0]7 By, (&) =[r*h; (6,00 + Y1 (&)



011 (&) D5 (61,0 + X (£,,0)94, (1) D3, (£;,0) E;* (6,,0)

3.2 Robust Nonlinear Controller Design

The design procedure of the proposed robust
nonlinear controller can be divided into two steps: the
inner-loop nonlinear H. controller that achieves
approximate /O linearization, and the outer-loop
linear robust controller that meets the tracking,
regulation, and robustness requirements. Fig. 4 shows
the block diagram of the H, 1/O linearization
problem formulation. The objective of the problem is
to find a nonlinear H, controller such that the
compensated nonlinear system approximates the
linear reference model in 1/O behavior. Due to the
space limitation, the detailed procedure of the
problem formulation can be referred to [ 7, 13].
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Fig. 4 The block diagram for the H,, 1/O
linearization problem
After the inner-loop controller design, the next
step is to design an outer-loop linear robust controller.
Fig. 5 shows the block diagram for the outer-loop
controller design. The compensated inner-loop
nonlinear system is represented by the linearized
model and an uncertainty block A(s) which is

characterized by an H_ bound. The linear H,,
control [1-2] and u -synthesis technique [3-4] can be

employed to design an outer-loop linear robust
controller to address the uncertainty. The structure of

the overall controller will be introduced as the

simulation diagram form in Section 3.4
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Fig. 5 Outer-loop robust controller design

3.3 Design Techniques Applied to Ship
Maneuvering

Now, we will use the robust nonlinear control
design techniques to design a maneuvering controller
for the nonlinear ship model in (1,2). After applying
the problem formulation of the H_ 1/O linearization
problem, one can employ the modified nonlinear H

controller formulas in Theorem 3.1 and the successive
algorithm for solving the Hamilton-Jacobi equations
[14] to obtain the inner-loop H_ 1/O linearization

controller, although the controller is too complicated
and lengthy to be included in the report.
Next, we design an outer-loop u -synthesis robust

controller to provide robust stability/performance
against the inexact dynamics matching in the inner-
loop H,_ /O linearization design. In Fig. 6, P,

stands for the linear reference model which is the
linearized model of the nonlinear plant (1-2). The
objective is to find a controller K, (s) so that the

closed-loop system is robustly stable and the outputs
of the ship controlled variables z follow w,, the
reference tracking signals, respectively as closely as
possible. W, is a weighting function for the tracking
error, usually alow-pass filter; the combination of W,
and A, represents the plant uncertainty, and usually
W, is a high-pass filter. W, and W, are weighting
functions chosen by the designers such that the design
specifications can be met. We choose them as follows.

__05 W = 100(s+100)

° s+0.03 $+10000

(14)
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Fig. 6 Formulation of an outer-loop control
problem

With the D-K iteration agorithm [3-4], we first
obtained an H_ controller K,(s) with optimal H_
norm equal to 16.47 which gives the maximal singular
value ¢ plot and p plot of E[G(s),Kl(s)] inFig. 7,
where FK[G(s),K(9)] is the lower linear fractional
transformation. Since K,(s) ignores the structure

information of A and treats A as a full matrix, it
gives a conservative solution to the problem. From
Fig. 7, we can see there exists difference between the




& plot and u plot which means the D-K iteration
can be further proceeded to reduce the H_ norm of

the closed-loop system to obtain a better controller
performance. After two iterations, the process
converges to a controller K,(s) with optimal H_

norm reduced to 15.85 which givesthe & plot and

plot of E[G(s), K,(9)] in Fig. 8, where the two plots
are matched together revealing that the H  norm of

the closed-loop system can not be further reduced,
hence the D-K iteration is stopped here.
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3.4 Ship Maneuvering Simulations

Time response simulations for the closed-loop
system with the nonlinear inner-loop controller and
the u -synthesis controller will be given in the

following for three ship maneuvering cases. course-
keeping, turning, and tracking problems. The
simulation diagram of the robust nonlinear controller
designisshownin Fig. 9.
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Robust Nonlinear » Nonlinear X
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Fig. 9 Simulation diagram of the robust nonlinear
controller design

3.4.1 Course-keeping Problem

Now the computer simulations for the closed-
loop system of the ship motion will be performed.

Let the initial conditions be [0 0 0 0 0] in

which the assumption of the initial condition for the
heading angle v is zero. It is reasonable because
any desired angle isjust a linear coordinate shift, for
example, we can define y o, =¥ —w4 Where vy is
the desired heading angle. For simplifying purpose,
the exogenous input (disturbances) to the nonlinear
model of the ship motion is defined as

d =0.01sin(t)[1-e®]11111]" (15)
to simulate the influence of the see wave. Note that
the amplitude is very high to emphasis the
performance and the robustness of the robust
nonlinear controller. The measurement noise is
assumed as n=0.001sin(100t). The ship motion
responses of the closed-loop system are plotted in
Figure 10. In Figure 10, the heading angle
w converges to O as desired while other states also

approach to 0 which indicates the robust nonlinear
works properly for the ship course-keeping problem
because of providing system performance and
robustness to the closed-loop system.
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Fig. 10 Ship motion responses for course-keeping

3.4.2 Turning Problem

The turning problem is also known as the course-
changing problem. Consider the ship motion has a
command for turning 0.2 radian then turning back to 0
degree after 25 seconds. Let the tracking signals be

v - {0.2(1— e)

, 0<t<25
0.2e %

other states=0

The tracking signal of the heading angle v can
be regarded as a combination of low frequency signals
or as the output of the low-pass filter 1/(s+1) driven
by a step function, than driven back to 0 after 25
seconds, which is indicated as the dashed line in Fig.
11. Fig. 11 shows the ship turning response of the



closed-loop system. We found that the robust
nonlinear controller has the performance to make the
output time response follows the tracking signal.
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Fig. 11 Ship heading angle response for turning

3.4.3 Tracking Problem

Two approaches of the way point guidance
tracking problem are introduced and the simulations
are compared in the following [9, 10]:

A. Way point guidance by straight line between two
points

Assume that the ship is moving with forward

speed U, say 10 knots, and the two way points are

with the coordinates from [x,(t,), Y4 ()] to

[X4(t;), yq(t;)] . The desired heading angle

based on the guidance system of the straight line
between the two points is computed as
v, = tani| 2140 =Ye (o) (17)
Xq (ts)—Xq(to)
The simulation of the ship maneuvering for the
tracking problem based on the straight line
approach is shown in Fig. 12. In Fig. 12, we can
see that the desired heading angle is only changed
at each way point, and hence some overshoot is as
expected. Another approach is introduced as
follows to resolve the overshoot problem.

B. Way point guidance by line of sight (LOS)
Let the tracking problem be given by a set of
way points [X,(k), y4 (k)] for k=1, 2,..., N. The

desired heading angle based on the guidance
system of the line of sight is defined as

4 Ya(K)—yq (1)
vel=ten [xd (9, (t)]
If the ship location [x(t), y(t)] a the time t
satisfying

[%g (k) = X(©)1* +[yq (k) = YOI < p5 (19)
then the next way point
[x4(k+1), y,(k+1)] should be selected where

P, s defined as the radius of the acceptance circle.

The simulation of the ship maneuvering for the
tracking problem based on the line of sight
approach is shown in Fig. 13 where the acceptance

(18)

radius is chosen as p, =0.5L and L denotes for

ship length. In Fig. 13, we can see that there is
almost no overshot for the tracking path, although
the ship does not pass exactly all the way points.

From the above observations, we know that for the
two approaches, the overshoot happened and the way
points passed through is a trade-off problem and can
be negotiated according to the tracking mission.
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Fig. 12 Way point guidance by straight line
between two points
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Fig. 13 Way point guidance by line of sight

4. Conclusions

In this project, the nonlinear ship maneuvering
control problem is investigated. By the inner-loop
H_ /O linearization and outer-loop u -synthesis
robust controller design, the robust nonlinear control
techniques can be applied to ship maneuvering
problem. The course-keeping, turning, and tracking
problems are considered and the simulations show
that the proposed robust nonlinear controller can
provide robust stability and performance.
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