
 1 
  

  

行政院國家科學委員會專題研究計畫成果報告 
 

船舶操控之非線性強健控制研究 
The Nonlinear H-infinity Control of Ship Maneuvering 

 

計畫編號： NSC-91-2213-E-164-001 
執行期限： 91 年 1 月 1 日至 91 年 7 月 31 日 
主持人：楊伯華   修平技術學院機械工程學系 

                                 計劃參與人員：陳清祺  修平技術學院電機工程學系 
 

          
中文摘要 

    本計畫提出非線性強健控制之設計方法，並
應用於船舶操控問題。首先，探討船舶開迴路之
操縱性能，如航行轉圈及 z 形連續轉彎等。隨後
藉由提出之非線性強健控制設計法，其中內迴路
係運用 H 輸入／輸出線性化求解非線性 H 控制
器，在外迴路設計  -合成強健控制器以求解船舶
操縱問題。本計畫並附上系統模擬，包括船舶操
控之航向保持、轉彎及追跡問題，以驗證非線性

H 控制之優越性能。 

關鍵詞：非線性 H 控制、船舶操縱控制、 H 輸
入／輸出線性化、  -合成 

 
Abstract 

       In this project, the design procedure of the robust 
nonlinear controller is introduced and applied to the 
ship maneuvering problem. First, the open-loop ship 
maneuvering performances, such as turning circle and 
zig-zag maneuver, are investigated. Then the robust 
nonlinear controller, with the inner-loop nonlinear 

H  controller design by the H  I/O linearization and 
the outer-loop  -synthesis robust controller, is 
proposed to design the ship maneuvering controller. 
The simulations of the ship maneuvering for the 
course-keeping, turning, and tracking problems are 
enclosed to demonstrate the superiority of the 
nonlinear H  controller. 
 
Keywords: nonlinear H  control, ship maneuvering 

control, H  I/O linearization,  -synthesis 
 
1. Introduction 

       As the linear H  control theory [1-4] has been 
developed for years, the controller designed based on 
this theory can provide the plant to reduce the 
disturbance from the environment and the closed-loop 
system can achieve the performance as expected. 
Recently, a much more complicated nonlinear H  

problem has also been solved by the concept of 
energy dissipation approach [5-8]. The construction of 
the controller and the necessary and sufficient 
conditions had been derived [5]. Due to the 
complication of operating a ship and the uncertainty 
disturbance from the environment, the maneuvering 
problem of a ship can be treated as a nonlinear H  
problem. The maneuvering of a ship includes the 
following: course keeping, turning, tracking, and 
berthing [9-10] can be considered as a nonlinear 
problem. As formulated, the state parameters variation 
will become the uncertainty of the controlled plant. 
Other external uncertainty actually comes from the 
hydrodynamic disturbance due to the wind, wave and 
current. Accordingly, a ship model is described as a 
nonlinear uncertain controlled plant when 
maneuvering. Therefore, the control to the ship 
becomes a nonlinear robust problem. Before applying 
the proposed nonlinear control techniques, the open-
loop ship maneuvering performances will be 
investigated. In the project all ship maneuvering, 
except some berthing maneuvers, involves turning 
motion, the turning circle and the zig-zag maneuver 
trial simulations are provided.  

In this project the design procedures of the robust 
nonlinear control are proposed, which can be divided 
into two steps: the inner-loop nonlinear controller that 
achieves input/output (I/O) linearization and the 
outer-loop linear robust controller that meets the 
tracking, regulation, and robustness requirements [7-
8]. We first choose a linear reference, in which a 
convenient choice is the Taylor linearization of the 
nonlinear system at the equilibrium point of interest. 
Then, a nonlinear H  controller is designed to 
minimize the H  norm of the difference between the 
compensated nonlinear system and the linear 
reference model. In the outer-loop controller design, 
we start by representing the inner-loop nonlinear 
system by the linearized model with an uncertainty 
characterized by the H  norm. A  -synthesis [3-4] 
problem formulation is then set up to construct a 
linear robust controller. The overall controller is the 
integration of the inner-loop nonlinear controller and 
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the outer-loop linear robust controller. Due to the 
insufficient applications of nonlinear ship control are 
available in the literatures, the proposed design 
procedures will be directly employed to the ship 
maneuvering control problems. The evaluation of 
proposed nonlinear controller is based on three ship 
maneuvering cases: course-keeping, turning, and 
tracking problems and the simulations for the closed-
loop system are included to demonstrate the 
performance of the controller. 
 
2. Ship Maneuvering 

In this section, the nonlinear ship model is 
introduced and the ship maneuvering performance 
trials are investigated. 

 
2.1 Nonlinear Ship Model       
      Assume the rigid-body ship dynamics are 
described by the six degrees of freedom: surge, sway, 
heave, pitch, roll, and yaw. For simplicity, pitch and 
heave can be ignored due to mild sea wave 
environment. The ship motion reference coordinate 
system is shown in Fig. 1 where 

           aaa zyx ,,  : direction of 3 coordinates 

            p : roll angle, roll rate 

            ,  : heading angle, rudder angle 

            vu ,  : surge velocity, sway velocity

              r : yaw rate 

            U : instantaneous speed 
The nonlinear model adopted in this project is 

defined as the following [8,9]: 

           2)( BxfAxx h   (1a) 

where    
Trpvx ][   (1b) 

       Assume all the states can be measured and hence  
the output equation can be represented by 
           xCrpvy T

2:][:    (2) 
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Fig. 1  Ship motion coordinate system 

 
2.2  Ship Maneuvering Characteristics 

In SNAME [11], there described detailed guide 
for sea trials for performing ship steering 
maneuvering. The standard ship maneuvers can be 
used to evaluate the robustness, controllability, 
performance, and limitations of the rudder steering 
system. Generally, the standard ship maneuvers tests 
include Turning Circle, Kempf’s Zig-zag, Pull-out, 
Spiral Maneuvers, Stopping Trials, … etc. Because 
these trials shall be tested in real sea environment for 
full-scale maneuvering trials, there are a lot of works 
involved and factors varying, for example, ship itself, 
sea wave, wind, manpower, test equipments. So, 
before the full-scale trials, one can perform the 
simulations to examine the ship’s steering 
maneuvering characteristics. In this project, the 
following two trials, turning circle and Zig-zag 
maneuver, are simulated. 

 
2.2.1Turning Circle 

The test can be used to check the rudder’s 
performance during course-changing (or turning) 
maneuver. In the trial, the ship is turned over at 
maximum speed, 15 knots, and with a rudder angle of 
15 degrees to obtain the turning circle. Generally, the 
turning path of a ship is characterized by 4 numerical 
measures: advance, transfer, tactical diameter, and 
steady turning radius. Fig. 2 shows the simulation of 
the ship turning circle, in which the above four key 
measurements are also defined in the plot. From Fig. 2, 
we can find that the advance, transfer, tactical 
diameter, and steady turning radius are 862, 277 , 731, 
and 382 meters respectively.  

From some turning theories [9, 10], we know 
that the steady turning radius would be proportional to 
the ship length, L, and inversely proportional to the 
rudder deflection angle. A highly stable ship requires 
more maneuvering effort than a marginally stable one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 Simulation of ship turning circle 
 
2.2.2 Zig-zag Maneuver 

This test is also known as the overshoot maneuver. 
The purpose of the trial is to check the ability of the 
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ship’s rudder to control the ship. The typical 
procedures for conducting the test are as follows [12]: 
(i) The ship is “steadied” on a straight course at a 

preselected speed, say 15 knots. 
(ii) Deflect the rudder to 10 degree, and hold until the 

change of the heading angle 10 degree is reached. 
(iii)At this point deflect the rudder to opposite angle 

of 10 degree and hold until the execute change of 
the heading angle 10 degrees on the opposite side 
is reached 

(iv) Repeat (ii) to (iii) until sufficient trial data are 
collected and this completes the test. 

The Zig-zag Maneuver test simulation for the 
nonlinear ship model is shown in Fig. 3. In Fig. 3, we 
can see the overshoot and the period are computed as 
3.4 degrees and 32.1 seconds, which can be used as an 
important parameter in the ship control system design 
[9,10]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Zig-zag maneuver test 
 
3.  Nonlinear Ship Maneuvering Control 
 
3.1 The Nonlinear H  Control Problem 
      Consider the following nonlinear input-affine 
generalized plant G : 
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where nx R  is the state of the system, 1pz R  is 
the controlled output, 1mw R  is the exogenous input 
including all commands and disturbances, 2mu R  
represents the control input, and 2py R  is the 
measured output. The problem is to find a nonlinear 
controller 
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such that the closed-loop system is stable and - 
dissipative [7]. The modified nonlinear H controller 
formulas are introduced in the following theorem [7, 
13]. 
 

Theorem 3.1  Consider the nonlinear generalized 
plant defined in (3) whose linearized model is in the 
canonical form  [7, 13]. If there exists a controller K  
of the form (4) such that the closed-loop system is 
stable and -dissipative, then we have the following:  

 (1) There exist )(xX  and  )( 1xYH  such that the 
following Hamilton-Jacobi inequalities: 

   0)()()()()()(2  xHxXxHxXxHxX QR
T

A
T   (5) 

 0)()()()()()(2 111111  xJxYxJxYxJxY QHR
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HA
T

H (6) 

 are satisfied for all x  in the domain of  interest 
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        according to the partition in  [7, 13] and )( 1xYH  
has a structure as: 
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 (2)  The function  
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         is the gradient of a positive function in the 
neighborhood of  the equilibrium point. 

(3) A nonlinear -dissipative H  controller can be 
constructed by the following formulas:            
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3.2 Robust Nonlinear Controller Design 

       The design procedure of the proposed robust 
nonlinear controller can be divided into two steps: the 
inner-loop nonlinear H  controller that achieves 
approximate I/O linearization, and the outer-loop 
linear robust controller that meets the tracking, 
regulation, and robustness requirements. Fig. 4 shows 
the block diagram of the H  I/O linearization 
problem formulation. The objective of the problem is 
to find a nonlinear H  controller such that the 
compensated nonlinear system approximates the 
linear reference model in I/O behavior. Due to the 
space limitation, the detailed procedure of the 
problem formulation can be referred to [7, 13]. 
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Fig. 4  The block diagram for the H  I/O 

linearization  problem  
After the inner-loop controller design, the next 

step is to design an outer-loop linear robust controller. 
Fig. 5 shows the block diagram for the outer-loop 
controller design. The compensated inner-loop 
nonlinear system is represented by the linearized 
model and an uncertainty block )(s  which is 

characterized by an H  bound. The linear H  
control [1-2] and  -synthesis technique [3-4] can be 
employed to design an outer-loop linear robust 
controller to address the uncertainty. The structure of 
the overall controller will be introduced as the 
simulation diagram form in Section 3.4. .                   

Fig. 5  Outer-loop robust controller design 

3.3 Design Techniques Applied to Ship 
Maneuvering 

Now, we will use the robust nonlinear control 
design techniques to design a maneuvering controller 
for the nonlinear ship model in (1,2).  After applying 
the problem formulation of the H  I/O linearization 
problem, one can employ the modified nonlinear H  
controller formulas in Theorem 3.1 and the successive 
algorithm for solving the Hamilton-Jacobi equations 
[14] to obtain the inner-loop H  I/O linearization 
controller, although the controller is too complicated 
and lengthy to be included in the report. 

      Next, we design an outer-loop  -synthesis robust 
controller to provide robust stability/performance 
against the inexact dynamics matching in the inner-
loop H  I/O linearization design. In Fig. 6, LP  
stands for the linear reference model which is the 
linearized model of the nonlinear plant (1-2).  The 
objective is to find a controller )(sK so that the 
closed-loop system is robustly stable and the outputs 
of the ship controlled variables z   follow tw , the 
reference tracking signals, respectively as closely as 
possible.  eW  is a weighting function for the tracking 
error, usually a low-pass filter; the combination of W  
and 1  represents the plant uncertainty, and usually 

W  is a high-pass filter. eW  and W  are weighting 
functions chosen by the designers such that the design 
specifications can be met.  We choose them as follows.   
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Fig. 6  Formulation of an outer-loop control 
problem 

With the D-K iteration algorithm [3-4], we first 
obtained an H  controller )(1 sK  with optimal H  
norm equal to 16.47 which gives the maximal singular 

value   plot and   plot of )](),(ˆ[ 1 sKsGlF  in Fig. 7, 
where )](),([ sKsGlF is the lower linear fractional 
transformation. Since )(1 sK  ignores the structure 
information of   and treats   as a full matrix, it 
gives a conservative solution to the problem. From 
Fig. 7, we can see there exists difference between the 
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  plot and   plot which means the D-K iteration 
can be further proceeded to reduce the H  norm of 
the closed-loop system to obtain a better controller 
performance. After two iterations, the process 
converges to a controller )(2 sK  with optimal H  
norm reduced to 15.85 which gives the   plot and   

plot of )](),(ˆ[ 2 sKsGlF  in Fig. 8, where the two plots 
are matched together revealing that the H  norm of 
the closed-loop system can not be further reduced, 
hence the D-K iteration is stopped here.  

 
 
 
 

 
 
 
 
 
 
 
 

Fig. 7   and   plots for the 1st D-K iteration 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8    and   plots for the 2nd D-K iteration 

  3.4 Ship Maneuvering Simulations 
      Time response simulations for the closed-loop 
system with the nonlinear inner-loop controller and 
the  -synthesis controller will be given in the 
following for three ship maneuvering cases: course-
keeping, turning, and tracking problems. The 
simulation diagram of the robust nonlinear controller 
design is shown in Fig. 9.  

 
Fig. 9 Simulation diagram of the robust nonlinear 

controller design 

3.4.1  Course-keeping Problem 

     Now the computer simulations for the closed-
loop system of the ship motion will be performed. 
Let the initial conditions be   T00000  in 
which the assumption of the initial condition for the 
heading angle   is zero. It is reasonable because 
any desired angle is just a linear coordinate shift, for 
example, we can define dnew    where d  is 
the desired heading angle. For simplifying purpose, 
the exogenous input (disturbances) to the nonlinear 
model of the ship motion is defined as  
        Ttetd 11111]1)[sin(01.0 2   (15) 
to simulate the influence of the see wave. Note that 
the amplitude is very high to emphasis the 
performance and the robustness of the robust 
nonlinear controller. The measurement noise is 
assumed as n=0.001sin(100t). The ship motion 
responses of the closed-loop system are plotted in 
Figure 10. In Figure 10, the heading angle 
 converges to 0 as desired while other states also 
approach to 0 which indicates the robust nonlinear 
works properly for the ship course-keeping problem 
because of providing system performance and 
robustness to the closed-loop system. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 10 Ship motion responses for course-keeping 

3.4.2  Turning Problem          

      The turning problem is also known as the course-
changing problem. Consider the ship motion has a 
command for turning 0.2 radian then turning back to 0 
degree after 25 seconds. Let the tracking signals be 
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The tracking signal of the heading angle   can 
be regarded as a combination of low frequency signals 
or as the output of the low-pass filter )1/(1 s  driven 
by a step function, than driven back to 0 after 25 
seconds, which is indicated as the dashed line in Fig. 
11.  Fig. 11 shows the ship turning response of the 
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closed-loop system. We found that the robust 
nonlinear controller has the performance to make the 
output time response follows the tracking signal. 
 

 
 
 
 
 
 
 
 

 
 

Fig. 11  Ship heading angle response for turning 
 
3.4.3  Tracking Problem 

Two approaches of the way point guidance 
tracking problem are introduced and the simulations 
are compared in the following [9, 10]: 

A. Way point guidance by straight line between two 
points 

Assume that the ship is moving with forward 
speed U, say 10 knots, and the two way points are 
with the coordinates from )](),([ 00 tytx dd  to 

)](),([ fdfd tytx . The desired heading angle 
based on the guidance system of the straight line 
between the two points is computed as 




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

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




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)()(

)()(
tan

0

01

txtx

tyty

dfd

dfd
d  (17) 

The simulation of the ship maneuvering for the 
tracking problem based on the straight line 
approach is shown in Fig. 12. In Fig. 12, we can 
see that the desired heading angle is only changed 
at each way point, and hence some overshoot is as 
expected. Another approach is introduced as 
follows to resolve the overshoot problem.  

B. Way point guidance by line of sight (LOS) 
Let the tracking problem be given by a set of 

way points )](),([ kykx dd  for k=1, 2,…, N. The 
desired heading angle based on the guidance 
system of the line of sight is defined as  












 

)()(
)()(

tan)( 1

txkx
tyky

t
dd

dd
d  (18) 

If the ship location )](),([ tytx  at the time t 
satisfying  

2
0

22 )]()([)]()([  tykytxkx dd   (19) 

then the next way point 
)]1(),1([  kykx dd should be selected where 

0 is defined as the radius of the acceptance circle. 
The simulation of the ship maneuvering for the 
tracking problem based on the line of sight  
approach is shown in Fig. 13 where the acceptance 

radius is chosen as L5.00  and L denotes for 
ship length. In Fig. 13, we can see that there is 
almost no overshot for the tracking path, although 
the ship does not pass exactly all the way points.  

From the above observations, we know that for the 
two approaches, the overshoot happened and the way 
points passed through is a trade-off problem and can 
be negotiated according to the tracking mission. 

 

 

 

 

 

 
 

 
 

Fig. 12 Way point guidance by straight line 
between two points 

 

 

 

 

 

 

 
 

 

Fig. 13 Way point guidance by line of sight 

4. Conclusions 
       In this project, the nonlinear ship maneuvering 
control problem is investigated. By the inner-loop 

H  I/O linearization and outer-loop  -synthesis 
robust controller design, the robust nonlinear control 
techniques can be applied to ship maneuvering 
problem. The course-keeping, turning, and tracking 
problems are considered and the simulations show 
that the proposed robust nonlinear controller can 
provide robust stability and performance. 
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