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CHAOTIC ANTI-CONTROL AND SYNCHRONIZATION OF ACTIVE VIBRATION
CONTROL SYSTEM WITH GYROSCOPIC MOMENT

4 H¥h T NSC
%{’«‘rﬁpxi’l 93 08" 01 p 3%
JFE AL mﬁﬁﬁﬁﬁ
FESEAR T E S P
d v‘%_@
AP B PRI RL AR R
A T T

H PIRRITREE AN S ”Lr’f?u%\ 770 i@ PRI 1%
[E «umlﬁv#"bﬁ:Jmn— yH iR 4 227 10T A é.}i

R JIRE 2R ] f PR B A H X
e BPRFEA li,‘ﬁ.ﬁl—‘/ﬂ%fgﬂ»’;ﬂ—:'m’bli’jﬂﬁ

&ﬁvﬂ‘k"%?’gﬂi%ggi%wa h"rzl%lrlﬁ;]
L 0 ERGE S - B R ) TR
Bogrdl o Tk S 4B S ALAMMIE > Mk SR
4 #B‘rht/v\%‘rkf}ia €& leig 5 $H rivehde 4 &
50 5 ARMITI S f2 L AHD E;J’\ AR T
h’" B e F R AR 7""’“%’“‘%"% WA T P 2R
MAF A S 80 4o 1 E ek SL2b e 4 B T
AEe A T T il .

Mg AR IpA] s R4 A R IR A R

Abstract

This project would provide an active vibration
control device based on gyroscopic moments to
suppress the vibration of the excited pendulum system.
The gyroscopic moment induced by a single-gimbal
control moment gyroscope is theoretically analyzed,
and a controller is derived. An analysis of stability and
chaotic dynamics of CMG (control moment gyro) is
presented. The necessary and sufficient conditions of
stability for the autonomous case were provided by
Routh-Hurwitz theory. Simulation results with a
single-gimbal CMG for a pendulum are carried out. As
the electrical time constant is much smaller than the
mechanical time constant, the singularly perturbed
system can be obtained by the singular perturbation
theory. The Liapunov stability of this system by
studying the reduced and boundary-layer systems was
also analyzed. Using the Melinikov technique, we can
give criteria for the existence of chaos in the gyro
motion.
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2.Introduction

In engineering vibratory problems, vibration
absorbers are usually to suppress random vibration.
However, it is not applicable to suppress the vibration
motion for these systems such as the attitude control of
spacecraft, the stability of surface vehicles and single
rail vehicles and so on, owing to there exists no reaction
support. These corresponding vibration systems can
suppress by an active vibration control device based on
the gyroscopic moment. The CMG (control moment
gyro) is also the application of gyroscopic mechanisms
that is still studied as an attitude control device for
artificial satellites. Various vibration control systems
with the CMG have been studied [1-3]. The
effectiveness of the gyroscopic moment for both
passive and active vibration control was discussed by
[1]. The CMG as an active vibration device for the
pendulum vibration of a gondola was proposed by [2].
An active vibration control system using a
gyro-stabilizer are applied to buildings by [3].

The excited pendulum model is used to model the
behavior of many engineering vibration systems, such
as offshore platforms, buildings in earthquakes etc. Its
study has been widely studied [4-7]. Many complex
phenomena of this kind of non-linear dynamic system
have been demonstrated. The chaotic pendulum [8-11]
is a physically realizable system that exhibits the
spectrum of temporal chaotic phenomena, including
control [11] and  synchronization [12-14].
Synchronization, in particular, has been a recent central
focus in chaotic dynamics.

Since Pecora and Carroll proposed their method of
synchronizing chaos [12], theoretical as well as
experimental research has been carried out in a variety
of non-linear dynamic systems. Chaos synchronization
makes it possible to synchronize two chaotic systems
previously considered impossible. It has widely aroused
research including the model of synchronization for
chaotic pendulums [13-14].



A theoretical technique, the Melnikov method, is
used to give specific criteria for chaotic vibrations. This
method is based on inspecting the topological behavior
of horseshoe maps and homoclinic orbits associated to
hyperbolic saddle points in phase space. Melnikov
analysis is applied to a generalized perturbed pendulum
system by Trueba [15], with the result of general
formula for the appearance of chaotic motions that
incorporate several particular cases. Wiggins and
Holmes [16] develop perturbation methods based on the
ideas of Melnikov for slowly varying oscillators in
three-dimensional space. The details of Melnikov’s
method can be found in Refs. [15-17]

This project would provide a vibration control
device based on the control moment gyro to suppress
the vibration of the excited pendulum system. The
coupled system is composed of the pendulum, control
moment gyro and DC motor. The CMG is the main
component of the active vibration control device as a
damping mechanism. It turns out that the effect of
gyroscopic moment depends on the rotating speed of
the gyroscope. The gyroscopic moment of the CMG
induced by its gimbal rotation directly controlled by an
electric motor. In gyroscopic systems, the dynamics of
gyros also exhibit chaotic behavior. It will exhibit
nonlinear phenomena including the existence of
periodic, quasi-periodic and chaotic motions of the
system. The stability conditions and degeneracy
surfaces of the system were derived by Routh-Hurwitz
theory. When the time constant of controller is much
smaller than the mechanical one the singularly
perturbed system can be obtained by singular
perturbation theory. The Liapunov stability of the
reduced and boundary-layer systems are also analyzed.
As the reduced system is subjected to the periodic
perturbation, a version of Melnikov method is used to
obtain criteria for the existence of chaotic motion.

3. Equations of Motion

The coupled system is composed of the pendulum,
control moment gyro and brushless DC motor as shown
in Fig. 1. The CMG (control moment gyro) is the main
component of the active vibration control device as a
damping mechanism as shown in Fig. 2. It turns out that
the effect of gyroscopic moment depends on the
rotating speed of the gyroscope. The gimbal movement
of CMG is directly controlled with BLDC motor, thus it
can be used as a sliding controller. The gimbal angle is
denoted asé.
3.1 Gyro System

The gimbals can turn about output X-axis with
rotational angle & . Motion about this axis is resisted by
the torsional spring and damping torque defined by
Ks0, C,0, respectively. Using Largrange’s equation,
the differential equation for the output deflection angle
0 of a rate gyro with feedback control is derived as
follows:

(A+A)0+C,0+K0+Cr(ea, coP+a, sinf) +(A+B,
~CI/2Aef ~a3)sitd-@e, co)+(A+A)a =T,

(D
where

Cn, =C(y —w, sinf + w, cos@) = const..

oy ,®, and @, denote the angular velocity

components of the platform along output axis X, input
axis Y, and normal axis Z, respectively. A, A (=B), C
and Ag , Bg R Cg denote the moments of inertia of

rotor and gimbals for the gimbals axes & 7, &
respectively. In planar motion, @, =-a, @, =0 and
oy =0, Eq. (1) becomes

(A+ A8 +C,0 + K0 —Cnyd cos 0

+1/2(A+ B, —Cg)d2 sin 20 =T,
The the
isT, =Cn.fcos@, and around the axis perpendicular
to both X and Y, T, =Cn.@sin@ &, =T(1,0) .
When the gimbal movement is negligible small, the
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output torque around Y-axis

output torque around the Y-axis is proportional to 0.
T, is the control-motor torque along the output axis of
the system to balance the corresponding gyroscopic
torque. The torque and electric current of control-motor
can be modeled by the following relation:
Te=Kql, 3)
LI+RI =K, (8, -0)- K0, (4)
where electromotive force is proportional to the
difference between the prescribed motion &, (t) and

the rotational angle 6, that is v =K, (6, —0). It is

applied to the control-motor. I, R, L, and K, are the

current, resistance, inductance, and back-electromotive
constant of the control-motor; K; denotes the torque

constant of the control-motor.

3.2 Active Vibration Control system
The equation of motion of the active vibration is
given as

J,&+C a+mglsina=u, 5)
where « is the swing angle of the pendulum, J, is
the inertia moment, C,, is damping torque, M, is

the mass, | is the arm length, g is the gravity
acceleration and U is the gyroscopic moment of CMG.

Case 1
In this active control we use CMG as a damping
moment, and the relationship of the swing angle

velocity @ and the CMG gimbal angle velocity 6 is



expressed as follows
u=-T, =—Cn.fcosb (6)
0=K.a, (7)
where K, is the coefficient of the control. So the

damping characteristics of the pendulum with CMG can
be expressed as

¢=(KCrycod+Co)/Jp), ag =gl J, =0/ (8)
where ¢ is the damping ratio of the pendulum with

CMG and @, is the angular frequency of the

pendulum.
Case 2

The control law is the velocity feedback
u=-K,a that applies the gyroscopic torque

proportional to the angular speed ¢ . The damping
characteristics of the resulting pendulum with CMG can
be expressed as

=K, +Coy)/2Io@,), @, =mogl/J, =ya/l (9
where ¢ is the damping ratio of the pendulum with
CMG and o, is the angular frequency of the

pendulum.
In order to avoid saturation for an impulse response

solution o = Ae ' sinm,/1—-¢7t, the inequality
should be satisfied [1].

Clng|sin @, =23, ALY 1-Cwe ™™ (10)
where The moment t=1, is the first time when

a =0, about a quarter period after the beginning,
t = 0. If there is no limit for #and ¢is small, then the
equality in Eq. (10) is rewritten as

Cng| = 23, Alw,

The damping ratio {’is almost proportional to |nR| .

(11)

Eq. (6) gives a precise estimation of the output torque to
the pendulum. When the gimbal movement is negligibly
small, the output torque around Y-axis is proportional to

6 . Meanwhile the reaction to the gimbal of the CMG is
estimated as —Cnga cos@. The gimbal movement

should be controlled, preserving the relation Eq. (6) to
perform positive work, i.e., to avoid the actuator
sometimes acts as a controlled break. Thus, we are
interested in the stability of the actuator.

4. The stability of gimbal motion

In this section, the stability of gyro system is discussed
by distinct methods. When the main pendulum system
is steady rotating, the stability of the autonomous
system is analyzed to obtain the necessary and
sufficient conditions for locally asymptotical stable

motion at the fixed point by Routh-Hurwitz criterion. In

addition, the Liapunov direct method was used to obtain
the conditions sufficient for asymptotical stability and

instability of motion of the feedback control system.
For the case when the perturbed angular velocity

W, = w,.= const., the perturbed angular acceleration
@y = @y ,=const., and the input angular velocity @,

= 0, this system is autonomous. One stationary point of
the nonlinear autonomous system is the origin (X, VY,

2)=(0, 0, z9), where zy=wy /D, X4 = Ds @y ,/D,Ds. Let
the disturbed motion be x=0+x;, y=0+X,, Z= z4+X;, so the
Eq.s (1-3) for disturbances are as:

X, = X,,

2

X, =—D,X, = Q. X, + D,X; +O(X; ),

X; =—=DiX; — DX, — D, X,,
where Q. =D, + Dyw,. — D, w5 .

(12)

First, the conditions for the stability of the origin
of the autonomous system will be obtained by using the
Routh-Hurwitz criterion.

The Jacobian matrix J at the origin of the system (12) is
in the form of

0 1 0
J=|-Q. -DO D, (13)
- D6 - I:)7 - Ds
and the characteristic equation of J in the form of
A’+( Ds+D ) )A’+(D,D+Q. +D;Ds) A
+(Qz Ds+DeD2)=0 or A’+a; A™+a, A+a;=0. (14)
The Hurwitz matrix H for the above polynomial is
a 1 0
H=la, a, a (15)
0 0 a

The necessary and sufficient conditions for all the roots
of characteristic Eq. (14) to have negative real parts are
provided by the Routh-Hurwitz criterion, i.e., the
principle minors of the Hurwitz matrix H must all be
positive. So, the stability conditions are obtained as
follows

Ds+ D>0 (16.a)
DsD,D;+D,Ds*+D,D,D,+D, Qc +D,’Ds-D¢D>>0,
i.e., € wyc e, wrctes<0, (16.b)
Q. Ds+DsD,>0, i.e., 84007¢"+8507c+66<0, (16.c)

where e,=€,=D,>0, e,=es= -D;, &= - D, -(DsD,D;,
+D,D5’+D,D,D7+D;’Ds-DsD,)/D, €6= - D, - D 4Dy/Ds.
The above stability conditions can be rewritten as

Wzc) < Wzc < Wgcy, (17)
According to the Routh-Hurwitz criterion, the necessary
and sufficient conditions for stability are as follows

Wyc) < Wzc < Wycy,

where @, ¢, =(D3-(D3*+4Dy(Das+Pmin))*)/(2Ds),

(18)



@y, =(Ds+(Ds™+4Dy(Das +Puin))"*)/(2Da),
Pmin=Min(e;", ),6;"=(DsD,D;+D;Ds*+D,D,D7+D,’Ds-
D¢D.)/Dy, e =D¢D./Ds.

That all the roots of the characteristic polynomial
of the Jacobian matrix J have negative real parts, i.c.,
the motion of the linearized autonomous system is
asymptotically stable at the fixed point. Alternatively,
the system possesses critical behavior when Jacobian
matrix J contains eigenvalues with zero real parts in the
following degeneracy surfaces:
1. There exists one zero eigenvalue (A,=0) of this
linearized system for the system parameter

Q. =-DsDy/Ds, i.e., @,c =@, 0r @yc,, ON
stability boundary, pmin=eﬁ‘* The residual
eigenvalues are
A23={-(D;+Ds)[(D;+Ds)*-4(D,D--
D¢D,/Ds+D,Ds)] '*}/2;

2. There exists a pair of pure imaginary
eigenvalues (A,=fjay) of this linearized
system for the system parameter

Qc =-(DsD,D;+D,Ds*+D,D,D7+D,’Ds-DyD,)/D

Wy = Wye; OF Wy = Dycy > Puin=es
where @y=(-D(DsD,D;+D;Ds*-Dy¢D5))"*/D; is a
real number, ie., D,>D,Ds*(Dg -DsD;). The
residual eigenvalue is -(D;+Ds);

3. There exists a double =zero -eigenvalues
( 1270,0) for (a) the system parameter
Q. =-D,DsD¢/(Ds -DsD;) and D,=D,Ds*(Dg
-DsD5), the residual eigenvalue is -(D;+Ds); (b)
the system parameter QC =-D¢D,/Ds and
D,=Dy(D¢ -DsD5)/ D52, the residual eigenvalue
is still in the form of -(D;+Ds) but the value
adapts for varying the system parameter D.

1, L.C.,

5. Singular perturbation model

To facilitate the analysis, in the interest of model
simplification, we usually neglect those small physical
parameters to reduce orders of a model. Singular
perturbations are used to simplify the model and to
provide tools for improving oversimplified models
when the original full order model satisfies the some
assumptions. To obtain the standard singular
perturbation model, let us define the variables p;=X,

P1a=Xa, =Ty, q=(Tn’D2)z, t = Ta7,
Tn=Ds/(D,Ds+D,D;), Te=1/Ds, &= T, / Tr, and rewrite
the state Eq. (4) as

P =P,,

P =4, P, ~(@ P, +a,@, sinp, +1/2a, (@ ~3 )sir2p,)
—(a,@, cog, —a,@, @, COLP, +d )+ ’
3q':_q+a5(p1d_p1)_a6p2a (19)
foom p=f,(t,p.a.e) .

or in the compact

£4=0,(tp,0.6),

where  p=[p.p2], fo=[for.fal. @=DiTm, @xs=DasTn’,
a;=D;Tn’, a=DsTy’, as=DDeTy/Ds, a=D:D;Tn/Ds,
oy (1) = o, (T,7) ) @, (7) =0, (T,7) )
@5 (1) =Ty (Ty7).

We assume that & << 1. This assumption means that
the mechanical time constant Ty, is sufficiently larger
than the electrical time constant T.. By using the

singular perturbation theory to consider the singularly
perturbed system (19), at = 0, the slow manifold is

q="h(z,p) =—-as(p, — P;g) —a:P,.
The corresponding slow model, p’= f,(z,p,h(z,p),0),

pI, = p2:
P, =—M(p,,@,,@,)=N(p,)+(@py —@), (20)

where

M(p,,@,,@,) = (8,5 +8) P, +a@, sinp,

+1/2a,(@; —@; )sin2p, +(@a@, cosp, —a,@, @, coLp,)
N(p2)=(a:tas)p..
For the @y = dy, =const.,

case when

@, = @O,c =CONst., and @, =0, the system has
one isolated equilibrium point at the origin where
P,y = @y, /as. Depending unpon the functions M(-)
and N(-) it might have other equilibrium points. A

Lyapunov function candidcate may be taken as the
energy-like function

V(p)=[" M (y, @0 0y +1/2p3. 1)
The derivative of V(p) along the trajectories of the
system is given by

V'(p) =-p,N(p,)<0. (22)
Thus, V'(p)is negative semidefinite. According to the
theorems of Barbashin and Krasovskii, the only
solution of the system that can stay in S={pe 97 | p,=0}
for all 7 is the trivial solution p(7)=0 if
M(0,@,:,0) =0, piM(p,,@,.,0) >0 for p;=0 is
satisfied , i.e.,

PP, @,.0) =P ((Bos +85) P, +850,cSinp, —a, @ cosp, sinp,)

> Pi((@s +a)sinp, +a@,csinp —a,acsing ) >0
(23)
when the following condition is held:
5ZC1 < 5ZC < 5ZC2 (24)
where

Byey =(a5 — \/a32 +4(a,s +a5)a,)/(2a,)

~ (D, - /D +4D,[D,, + D,(D, /D, )] )/(2D,)

ﬁzcz = (a3 + \/a32 + 4(azs + 8 )a4 )/(2a4)

= (D3 + \/D32 + 4D4[D25 + D2(D6 / Ds)] )/(2D4)
Thus, the origin is asymptotically stable.



For the case when @, , @, and @, are
time-varying function, the system has an exponentially
stable (P> P1) = (Pyo (7), Pio (7))

where P,y =0, when the following condition is held:
(25)

motion

W <@, (7)< Wy,
where
~ 2 *
@7, =(3,, _\/a3r +4(a,5 +a5)a,,)/(2a,,)

= (D, —/D2 +4D,[D}; +D,(D, / D;)] ) /(2D,,)

@y, = (ay, +Jal +4(a) +3,)a,,)/(2a,,)

= (D, ++/D}, +4D,[D;; + D,(D, / D;)])/(2D,,)

and a4, > 0, i.e., -n/4 < Py < /4, a3=a3€0S(P1o),
au=a,C08(2P10), Ay =85 +a,@ , i.e., Dy >0,

-n/4 < Gy < /4, D3=D3c0S( ), Dy=D4c0S(26)),

D;s =D, + D4t0)\? >

which can be derived by the same form of Liapunov

functions as reference. The origin of the corresponding
boundary-layer system

d
L~ g,(r.p.y +h(z,p).0) ==y

dr
is exponentially stable uniformly in (7, p). Since f, and
0o of Eq. (19) also satisfy the conditions of Appendix I,
we conclude that the origin of the full singularly
perturbed system (34) is exponentially stable for
sufficiently small _ Thus, the necessary and sufficient
condition for asymptotic stability is the Eq. (25).

In Section 4, a three-dimensional dynamic system is
considered. In Section 5, we consider the case in which
the mechanical time constant is sufficiently larger than
the electrical time constant. Thus the system can be
reduced to a two-dimensional system by singular
perturbations which simply the order of the model and
provide tools for improving oversimplified models.

(26)

6. The Melnikov analysis

In previous studies, both complete nonlinear and
full singularly perturbed models are considered by the
Liapunov direct method and singular perturbation
theory respectively. The stability of a single-axis rate
gyro mounted in a space vehicle that is spinning with
uncertain angular velocity @, (t) about the spin axis
of the gyro is established. In this section, we further

study the chaotic dynamics of the reduced system as Eq.

(35), where p;g=0, when the vehicle undergoes

perturbed harmonic rotation about X-axis, and
harmonic rotation concerning Z-axis,
ie., @, =0, @, =@, +V,cos@T+3,),

Oy =W+, SINERT+5,) :
oy =L, =v,m,co8(w,7+75,) ; v;and @, are the
amplitude and frequency of the perturbed angular

velocity of vehicle.
Here, we assume that the angular velocity of

vehicle is of small disturbance near a constant angular

velocity, i.e., @, =const. , &V, =v, and
a,m, >>1 . Changing time variable t=w,7 ,
o) =a,0, and
letting q, = P;,0;, =G, eb, =(a, +a)/ w,,

eb, =(a,q +a,)/ o,

g, =—(a,d% 12+a,v7 14)/@?, &b, =v,a, /o,
gzb5 = _V1a452C /a)r? s 82b6 = —v12a4 /0)5 ,
b, =—v,Q, /o, Q =00, Q=0,0,.

In Eq. (20), we have the perturbation form

g, =0Q,,

Cp =it} +a(-jc, —,0 —bysirdX b sirg cosQt +4)
—d siq cosdRt +0))—dy, sirRg co Ot +6) b, codRE+3))

27)
in the compact form

4= f(@+e9(q,0)

where

q=[0,9,1.f(@=[f,@.f,@19@1) =[9,@.D.g,@ D]

For &= 0, the system (28), which has centers at (0,
0) and hyperbolic saddles at ; =(£7,0), is a

Hamiltonian system with a Hamiltonian function

1
H(q,,q,) = 5%2 —cos(q,).

The Hamiltonian system has homoclinic orbits that
connect different saddle points q§ . Hence the
hyperbolic periodic orbits of the Hamiltonian system,
for H(q,,q,)=h =1, are given by

a, (1) =(q;;,05,) = (¥2tan” sinht,+ 2secht) (30)

We will compute the Melnikov function for Q

(28)

(29)

(the computation for Q, is identical).
The Melnikov function is given by [16]

M*(t,) = [ (@ ) g(ay @8+ )
=M —M; =M} =M =M/

€1)

where

f(q, (t))=0a;, ),

Q(QE (f),f +f0) = _b1q;h (f) - bzq;% (f) _b3 sin 2q;rh

—b, sinq;;, (t)cos@, (t +t,)+5,)—b, cos@, (t +1,)+7,)

M =b, j”w q;, ), )t =b, j“; (2secht)’dft = 8b,(32.2)
M; =b,[” o Ok =b, [ (2sedt)@tan (sinlf)k =0(32.b)

M; =b [ o, @sindoy, @3k =, [ @sedD)sing(2tan (sink))yE =0
(32.0)



M; =b, [ g5, ®sin@;, ©)cos€ E+F,)+6)dt
=b, [ (2scchf)sin@tan(sint)cos@ £ +£,) + 5 )df 29
=b,[-22% csch(%)sin(()lfo +6)]
M; =b, [ a5, (E)cos(@, (E +E,) + 6, )d
=b, j‘: (2sechb)cos(@, (f +§,)+5,)df.  (32.¢)

72(22
2
The integral M, and M, can be evaluated by the

=b,[27sech(

)cos(Q,t, +5,)]

method of residues. Hence, the Melnikov function
becomes

M*(t,) =M, —M3 —M; —M; —M:
) O
=—8b, —b,[-220) csch(T) sin@,f, +6,)]- 33)

K,
2
Suppose that M " (f,) has a simple zero, i.e., there

—b,[27sech(—=) cos(@,t, +J,)]

exists a point f, =, such that

~ IMT
M*(t)=0——(t) =0,
(%) E (%)
That is

M +(t~0):5b4E(Ql)_5b7R(Qz)_85bl =0,
where
eb, =(a, +a,)/w, ,

(34

eb, =v,a,/w] ,
eb, =—v,Q, /o, ,

E(Q,) =22Q7 csc h(%) sin(Q,f, +6,) ,

2,
2
Then the stable and unstable perturbed manifolds that
are close to homoclinic manifolds of the unperturbed
system intersect transversely and there exist transverse
homoclinic orbits. This implies that chaotic dynamics
may occur through the Smale-Birkhoff homoclinic

theorem.
The first case that we are interested approaching in
here is the case whenQ, — 0, i.e., @y =0, the vehicle

R(Q,) =2z sech(

Ycos(Q,t, +7,).

undergoes steady rotation about X axis and harmonic
rotation concerning Z-axis. For simplicity the initial
time is chosen in such a way that the initial phase is
0,=0. For this particular case, the critical forcing

amplitude v,, is given by

4(a, +ay)w, . , 7

lc — ( 1 62) n Slnh( 1) (35)
a7, 2

Another interesting result appears when we

consider that the vehicle undergoes high frequency

oscillation about X and the effect of harmonic rotation
concerning Z-axis can be neglected. For simplicity the
initial time is chosen in such a way that the initial phase
is %=0. For this particular case, the critical forcing

amplitude v, is given by

— 4(a1 + a6) COSh(ﬂgz)z)
2

Now we consider the case when the vehicle
undergoes harmonically in both X-axis and Z-axis. In

this case, v, =v,,Q, =Q,,and 8, -9, =x/2, the
critical forcing amplitude v,, is given by

¢ =Va =[4a, +a4)/ 7] (37
(@, / @,)Q; csch(2Q, /2) +Q, sech(zQ, /2)]

It follows from the Melnikov theory that if the forcing
amplitude v >v, 0orv, for a given €, or €, the

(36)

2¢c

V|

manifolds of the Eq. (27) intersect and may yield
horseshoe maps near the saddle points. The critical
forcing amplitude was numerically computed and the
result is shown in following section.

7. Numerical demonstrations

In this section, examples are carried out to examine
the various forms of dynamic behavior of the system for
the previous analyses by numerical simulation
techniques. The parameters of the cases are shown in
the Appendix II.

To have a visual information in Eq. (35), we have
plotted in Fig. 3. The case shown corresponds to a rate
gyro mounted on a space vehicle that undergoes steady
rotation about X-axis and harmonic rotation concerning

Z-axis. The critical forcing amplitude v, increases as

the constant angular velocity @,. increases. The
presence of a local minimum of the curves, in Fig.3,
means that the system is easier in the onset of
homoclinic chaos depending on the perturbed angular
velocity @,. . Also, the onset of homoclinic chaos

appears easier when the frequency (2, approaches to the
neighborhood of the natural frequency (%=1, for some
given @,.. In Fig. 4, a plot of the critical forcing

amplitude v, versus the frequency (2 is presented.

The vehicle undergoes high frequency oscillation about
X and the effect of harmonic rotation concerning Z-axis
can be neglected, i.e., the critical forcing amplitude

V,. is unconcerned with @, . The Melnikov analysis

gives a lower-bound on chaotic behavior. When the
vehicle undergoes harmonically in both X-axis and
Z-axis, the critical forcing amplitude versus the
frequency (2 from Eq. (37) is shown as Fig. 5 for

@, =1000 (—), @, =1500 (---), @, =2000 (---)
and @, =2500 (-.). As we have done the same study as
in Fig. 5, it is easy to see what is the difference between



these two cases: the critical forcing amplitude v, is

lower than in the previous case and the one that
minimizes the critical forcing amplitude as the
frequency (2 is closely the natural frequency (=1, for
some given @, .

8. Conclusions

An analysis is presented to a single-axis rate gyro
subjected to linear feedback control when the vehicle is
simultaneously spinning with uncertain angular velocity
@, (t) about its spin axis and accelerating w, (t)

with respect to the output axis of the gyro. By using the
Liapunov direct method, the conditions sufficient for
stability are given as Eq. (19). Here, the term

D,.@, (t) increases the effective torsional spring

torque, such that the stability domain of the perturbed
angular velocity @, (t) becomes larger. For the

autonomous case in which @, and @, are steady, both

stability and degeneracy conditions of the fixed point
are derived by the Routh-Hurwitz criterion in section 3.
The necessary and sufficient conditions for asymptotic
stability are obtained as Eq. (33). In section 4, the
electrical time constant is much smaller than the
mechanical time constant is assumed. The stability of a
full singular perturbed system from the reduced and
boundary-layer systems are studied in an autonomous
system by the Liapunov direct method for sufficiently
small & In section 5, we obtain criteria for existence of
chaos in the reduced system by applying Melnikov
method. Plots of the critical forcing amplitude versus
the frequency of the perturbed motion are presented for
some specific examples. Its critical forcing amplitude is
minimized when the perturbed frequency is near the
normalized natural frequency.
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Appendix I

The stability analysis that describes a procedure for
constructing Liapunov functions for full singularly
perturbed system as follows:

Consider the singularly perturbed nonautonomous

system

x=f(t,x,2,¢), €z=9(,Xx,2,¢&)
Assume that the following assumptions are satisfied for
all  (1,X,&) € [0,0)x B, x[0,&,]
(1) f(t,0,0,&)=0and g(t,0,0,&)=0.
(2) The equation 0= g(t,X,z,0) has an isolated root
Z=h(t,x) such that h(t,x)=0.
(3) The functions f, g and h and their partial derivatives

up to order 2 are bounded for z-h(t,x) € B,

(4) The origin of the reduced system



x = f(t,x,h(t,x),0) is exponentially stable.
(5) The origin of the boundary-layer

dy .
——=g(t,x,y +h(t, x),0) is
dr
uniformly stable in (t, X).

Then there exists ¢ > 0 such that, for all € < S*, the
origin of (I1) is exponentially stable.

system

exponentially

Appendix 11
The values of gyro parameters:

(A+A,)=54dyne cm-s* Cry, =108x10'dynecm:s,
C, =54dynecm-rad™ -s,K; =54x10°dynecm-rad™,
G K

= —frad-s',Dy=——=10A"-rad’-s?,
(A+Ay) (A+A)
D - K v rad s%,0 _CR =2006",D, _ABG) 1
(A+hy) (A+A) (A+A)

D =R/L=2%¢¢, D =K /L=250\rad -s", D =K, /L=1Arad
TeZI/D5:0.04, Tm:D5/(D1 D5+D2D7):0.714,
a,=D T=0.714, a;=D;T>=1020, ac=D,D,T/Ds=0.286,

W, =405 .
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Fig. 3. Plot of the critical forcing amplitude versus the
frequency (2 from Eq. (35) for @,c =1000
(—), &, =1500 (---), @, =2000 (-) and @, =2500
().
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Fig. 4. Plot of the critical forcing amplitude versus the
frequency (2 from Eq. (36).
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Fig. 2. The single-gimbal control moment gyro
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Fig. 5. Plot of the critical forcing amplitude versus the
frequency (2 from Eq. (37) for @,. =1000

(), @y =1500 (---), @, =2000 (--) and @, =2500
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