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中文摘要 

本計畫擬以伺服陀螺儀為主動控制元件，對具

單擺振動模式之航空器作振動控制。系統架構由單

擺、伺服陀螺儀與直流無刷馬達所構成的。伺服陀螺

儀為系統的主動控制元件，其陀螺力矩可以作為角度

穩定，消振及位置等控制系統的伺服力矩。在單擺系

統中伺服陀螺儀為提供消振阻尼力矩的元件，考量其

角動量大小方向會隨馬達轉角變化有所改變限制，將

陀螺輸出力矩設計為一控制器，對單擺振動系統作振

動控制。因系統存在耦合非線性項，對系統非線性動

力特性分析是極為重要的，但迄今對其所作的動力分

析，多以線性近似方程為基礎，顯然在精確性和可靠

性方面存在著問題。本計畫將採用精確拉格朗日非線

性運動微分方程，加以作詳細的系統非線性動力與渾

沌動力分析，並設計系統控制律。 

 
關鍵詞：振動控制、陀螺力、渾沌反控制、渾沌同步 
 
Abstract 

This project would provide an active vibration 
control device based on gyroscopic moments to 
suppress the vibration of the excited pendulum system. 
The gyroscopic moment induced by a single-gimbal 
control moment gyroscope is theoretically analyzed, 
and a controller is derived. An analysis of stability and 
chaotic dynamics of CMG (control moment gyro) is 
presented. The necessary and sufficient conditions of 
stability for the autonomous case were provided by 
Routh-Hurwitz theory. Simulation results with a 
single-gimbal CMG for a pendulum are carried out. As 
the electrical time constant is much smaller than the 
mechanical time constant, the singularly perturbed 
system can be obtained by the singular perturbation 
theory. The Liapunov stability of this system by 
studying the reduced and boundary-layer systems was 
also analyzed. Using the Melinikov technique, we can 
give criteria for the existence of chaos in the gyro 
motion. 
 

Keywords: Vibration Control, Gyroscopic Moment, 
Chaotic Anti-control, Chaotic Synchronization 

 

2.Introduction 

In engineering vibratory problems, vibration 
absorbers are usually to suppress random vibration. 
However, it is not applicable to suppress the vibration 
motion for these systems such as the attitude control of 
spacecraft, the stability of surface vehicles and single 
rail vehicles and so on, owing to there exists no reaction 
support. These corresponding vibration systems can 
suppress by an active vibration control device based on 
the gyroscopic moment. The CMG (control moment 
gyro) is also the application of gyroscopic mechanisms 
that is still studied as an attitude control device for 
artificial satellites. Various vibration control systems 
with the CMG have been studied [1-3]. The 
effectiveness of the gyroscopic moment for both 
passive and active vibration control was discussed by 
[1]. The CMG as an active vibration device for the 
pendulum vibration of a gondola was proposed by [2]. 
An active vibration control system using a 
gyro-stabilizer are applied to buildings by [3]. 

The excited pendulum model is used to model the 
behavior of many engineering vibration systems, such 
as offshore platforms, buildings in earthquakes etc. Its 
study has been widely studied [4-7]. Many complex 
phenomena of this kind of non-linear dynamic system 
have been demonstrated. The chaotic pendulum [8-11] 
is a physically realizable system that exhibits the 
spectrum of temporal chaotic phenomena, including 
control [11] and synchronization [12-14]. 
Synchronization, in particular, has been a recent central 
focus in chaotic dynamics.  

Since Pecora and Carroll proposed their method of 
synchronizing chaos [12], theoretical as well as 
experimental research has been carried out in a variety 
of non-linear dynamic systems. Chaos synchronization 
makes it possible to synchronize two chaotic systems 
previously considered impossible. It has widely aroused 
research including the model of synchronization for 
chaotic pendulums [13-14].  



A theoretical technique, the Melnikov method, is 
used to give specific criteria for chaotic vibrations. This 
method is based on inspecting the topological behavior 
of horseshoe maps and homoclinic orbits associated to 
hyperbolic saddle points in phase space. Melnikov 
analysis is applied to a generalized perturbed pendulum 
system by Trueba [15], with the result of general 
formula for the appearance of chaotic motions that 
incorporate several particular cases. Wiggins and 
Holmes [16] develop perturbation methods based on the 
ideas of Melnikov for slowly varying oscillators in 
three-dimensional space. The details of Melnikov’s 
method can be found in Refs. [15-17] 

This project would provide a vibration control 
device based on the control moment gyro to suppress 
the vibration of the excited pendulum system. The 
coupled system is composed of the pendulum, control 
moment gyro and DC motor. The CMG is the main 
component of the active vibration control device as a 
damping mechanism. It turns out that the effect of 
gyroscopic moment depends on the rotating speed of 
the gyroscope. The gyroscopic moment of the CMG 
induced by its gimbal rotation directly controlled by an 
electric motor. In gyroscopic systems, the dynamics of 
gyros also exhibit chaotic behavior. It will exhibit 
nonlinear phenomena including the existence of 
periodic, quasi-periodic and chaotic motions of the 
system. The stability conditions and degeneracy 
surfaces of the system were derived by Routh-Hurwitz 
theory. When the time constant of controller is much 
smaller than the mechanical one the singularly 
perturbed system can be obtained by singular 
perturbation theory. The Liapunov stability of the 
reduced and boundary-layer systems are also analyzed. 
As the reduced system is subjected to the periodic 
perturbation, a version of Melnikov method is used to 
obtain criteria for the existence of chaotic motion. 

 
3. Equations of Motion 

The coupled system is composed of the pendulum, 
control moment gyro and brushless DC motor as shown 
in Fig. 1. The CMG (control moment gyro) is the main 
component of the active vibration control device as a 
damping mechanism as shown in Fig. 2. It turns out that 
the effect of gyroscopic moment depends on the 
rotating speed of the gyroscope. The gimbal movement 
of CMG is directly controlled with BLDC motor, thus it 
can be used as a sliding controller. The gimbal angle is 
denoted asθ. 
3.1 Gyro System 

The gimbals can turn about output X-axis with 
rotational angleθ . Motion about this axis is resisted by 
the torsional spring and damping torque defined by 

θSK , , respectively. Using Largrange’s equation, 
the differential equation for the output deflection angle 
θ of a rate gyro with feedback control is derived as 
follows: 

θ&dC
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where 

Cn C constR Y Z= − + =( & sin cos ) .ψ ω θ ω θ . 

Xω , Yω  and Zω  denote the angular velocity 
components of the platform along output axis X, input 
axis Y, and normal axis Z, respectively. A, A (=B), C 
and A B Cg g, , g  denote the moments of inertia of 
rotor and gimbals for the gimbals axes ξ, η, ζ, 
respectively. In planar motion, 0, =−= ZY ωαω &  and 

0=Xω& , Eq. (1) becomes 
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The output torque around the Y-axis 
is , and around the axis perpendicular 
to both X and Y, 

θθ cos&
RY CnT =

θθ sin&
RZ CnT = ),( θω ITX =& . 

When the gimbal movement is negligible small, the 
output torque around the Y-axis is proportional to . 
T

θ&
c is the control-motor torque along the output axis of 

the system to balance the corresponding gyroscopic 
torque. The torque and electric current of control-motor 
can be modeled by the following relation: 
 Tc = KTI, (3) 
 LI RI K Ka d

& ( ) &+ = − −θ θ θ0 , (4) 
where electromotive force is proportional to the 

difference between the prescribed motion )(tdθ  and 
the rotational angle θ, that is )( θθν −= daK . It is 
applied to the control-motor. I, R, L, and K0 are the 
current, resistance, inductance, and back-electromotive 
constant of the control-motor; KT  denotes the torque 
constant of the control-motor. 

 
3.2 Active Vibration Control system 

The equation of motion of the active vibration is 
given as 

uglmCJ ppdp =++ ααα sin&&& ,   (5) 

where α  is the swing angle of the pendulum,  is 
the inertia moment,  is damping torque,  is 
the mass, l is the arm length, g is the gravity 
acceleration and u is the gyroscopic moment of CMG. 

PJ

PdC Pm

 
Case 1 
 In this active control we use CMG as a damping 
moment, and the relationship of the swing angle 
velocity α&  and the CMG gimbal angle velocity  is θ&
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expressed as follows 
θθ cos&

RY CnTu −=−=  (6) 
αθ &&

PK= ,   (7) 
where  is the coefficient of the control. So the 
damping characteristics of the pendulum with CMG can 
be expressed as 

PK

lgJglmJCCnK PPPPdRP //),2/()cos( 00 ==+= ωωθζ ,(8) 
where ζ  is the damping ratio of the pendulum with 
CMG and 0ω  is the angular frequency of the 
pendulum. 
 
Case 2 
 The control law is the velocity feedback 

α&uKu −=  that applies the gyroscopic torque 
proportional to the angular speed α& . The damping 
characteristics of the resulting pendulum with CMG can 
be expressed as 

lgJglmJCK PPPPdu //),2/()( 00 ==+= ωωζ  (9) 
where ζ  is the damping ratio of the pendulum with 
CMG and 0ω is the angular frequency of the 
pendulum. 
  In order to avoid saturation for an impulse response 

solution tAe t 2
0 1sin0 ζωα ζω −= − , the inequality 

should be satisfied [1]. 
qt

PR eAJnC 0
0

2
max 12sin ζωωζζθ −−≥  (10) 

where The moment  is the first time when qtt =
0=α& , about a quarter period after the beginning, 
. If there is no limit for θ and ζ is small, then the 

equality in Eq. (10) is rewritten as 
0=t

02 ζωAJnC PR ≈  (11) 

The damping ratio ζ is almost proportional to Rn . 
Eq. (6) gives a precise estimation of the output torque to 
the pendulum. When the gimbal movement is negligibly 
small, the output torque around Y-axis is proportional to 

. Meanwhile the reaction to the gimbal of the CMG is 
estimated as 
θ&

θα cos&RCn− . The gimbal movement 
should be controlled, preserving the relation Eq. (6) to 
perform positive work, i.e., to avoid the actuator 
sometimes acts as a controlled break. Thus, we are 
interested in the stability of the actuator. 
 
4. The stability of gimbal motion 
In this section, the stability of gyro system is discussed 
by distinct methods. When the main pendulum system 
is steady rotating, the stability of the autonomous 
system is analyzed to obtain the necessary and 
sufficient conditions for locally asymptotical stable 
motion at the fixed point by Routh-Hurwitz criterion. In 

addition, the Liapunov direct method was used to obtain 
the conditions sufficient for asymptotical stability and 
instability of motion of the feedback control system. 

For the case when the perturbed angular velocity 
Zω = ZCω = const., the perturbed angular acceleration 

Xω&  = 0Xω& =const., and the input angular velocity Yω  

= 0, this system is autonomous. One stationary point of 
the nonlinear autonomous system is the origin (x, y, 
z)=(0, 0, z0), where z0 = 0Xω& /D2, xd = D5 0Xω& /D2D6. Let 
the disturbed motion be x=0+x1, y=0+x2, z= z0+x3, so the 
Eq.s (1-3) for disturbances are as: 
  &x x1 2= , 

 , )( 2
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&x D x D x D3 5 3 6 1 7 x2= − − − ,  (12) 
where . 2

432 ZCZCSC DDDQ ωω −+=
First, the conditions for the stability of the origin 

of the autonomous system will be obtained by using the 
Routh-Hurwitz criterion. 
The Jacobian matrix J at the origin of the system (12) is 
in the form of 

J = . (13) 
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and the characteristic equation of J in the form of 
λ3+( D5+D1)λ2+(D2D7+  +DCQ 1D5)λ 

+( DCQ 5+D6D2)=0 orλ3+a1λ
2+a2λ+a3=0. (14) 

The Hurwitz matrix H for the above polynomial is 

H = . (15) 
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The necessary and sufficient conditions for all the roots 
of characteristic Eq. (14) to have negative real parts are 
provided by the Routh-Hurwitz criterion, i.e., the 
principle minors of the Hurwitz matrix H must all be 
positive. So, the stability conditions are obtained as 
follows 

D5+ D1>0 (16.a) 
D5D2D7+D1D5

2+D1D2D7+D1 CQ +D1
2D5-D6D2>0, 

i.e., e1ωZC
2+e2ωZC+e3<0, (16.b) 

CQ D5+D6D2>0, i.e., e4ωZC
2+e5ωZC+e6<0, (16.c) 

where e1=e4=D4>0, e2=e5= -D3, e3= - -(DSD2 5D2D7 

+D1D5
2+D1D2D7+D1

2D5-D6D2)/D1, e6= - - DSD2  6D2/D5. 
The above stability conditions can be rewritten as 

1ZCω  < ZCω  < 2ZCω , (17) 
According to the Routh-Hurwitz criterion, the necessary 
and sufficient conditions for stability are as follows 

1ZCω  < ZCω  < 2ZCω , (18) 
where 1ZCω =(D3-(D3

2+4D4(D2S+pmin))1/2)/(2D4), 
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 2ZCω =(D3+(D3
2+4D4(D2S +pmin))1/2)/(2D4), 

pmin=Min(e3
*,e6

*),e3
*=(D5D2D7+D1D5

2+D1D2D7+D1
2D5-

D6D2)/D1, e6
*=D6D2/D5. 
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That all the roots of the characteristic polynomial 
of the Jacobian matrix J have negative real parts, i.e., 
the motion of the linearized autonomous system is 
asymptotically stable at the fixed point. Alternatively, 
the system possesses critical behavior when Jacobian 
matrix J contains eigenvalues with zero real parts in the 
following degeneracy surfaces:  

1. There exists one zero eigenvalue (λ=0) of this 
linearized system for the system parameter 

=-DCQ 6D2/D5, i.e., ZCω = 1ZCω or 2ZCω , on 
stability boundary, pmin=e6.

*
 The residual 

eigenvalues are 
λ2,3={-(D1+D5)±[(D1+D5)2-4(D2D7- 
D6D2/D5+D1D5)] 1/2}/2; 

2. There exists a pair of pure imaginary 
eigenvalues (λ1,2=±jω0) of this linearized 
system for the system parameter 

=-(DCQ 5D2D7+D1D5
2+D1D2D7+D1

2D5-D6D2)/D

1, i.e., ZCω = 1ZCω  or ZCω = 2ZCω , pmin=e3
*, 

where ω0=(-D1(D5D2D7+D1D5
2-D6D2))1/2/D1 is a 

real number, i.e., D2>D1D5
2/(D6 -D5D7). The 

residual eigenvalue is -(D1+D5); 
3. There exists a double zero eigenvalues 

(　1,2=0,0) for (a) the system parameter 
=-DCQ 1D5D6/(D6 -D5D7) and D2=D1D5

2/(D6 
-D5D7), the residual eigenvalue is -(D1+D5); (b) 
the system parameter CQ  =-D6D2/D5 and 
D1=D2(D6 -D5D7)/ D5

2, the residual eigenvalue 
is still in the form of -(D1+D5) but the value 
adapts for varying the system parameter D1. 

 
5. Singular perturbation model 
 To facilitate the analysis, in the interest of model 
simplification, we usually neglect those small physical 
parameters to reduce orders of a model. Singular 
perturbations are used to simplify the model and to 
provide tools for improving oversimplified models 
when the original full order model satisfies the some 
assumptions. To obtain the standard singular 
perturbation model, let us define the variables p1=x, 
p1d=xd, p2=Tmy, q=(Tm

2D2)z, τmTt = , 
Tm=D5/(D1D5+D2D7), Te=1/D5, ε= Te / Tm, and rewrite 
the state Eq. (4) as 

21 pp =′ , 
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or  in the compact form ),,,(0 εqptfp =& , 

),,,(0 εε qptgq =& , 

where p=[p1,p2], f0=[f01,f02], a1=D1Tm, a2S=D2STm
2, 

a3=D3Tm
2, a4=D4Tm

2, a5=D2D6Tm
2/D5, a6=D2D7Tm/D5, 

)()(~ τωτω mYY T= , )()(~ τωτω mZZ T= , 
)()(~ τωτω mXmX TT ′=′ . 

We assume that ε << 1. This assumption means that 
the mechanical time constant Tm is sufficiently larger 
than the electrical time constant Te. By using the 
singular perturbation theory to consider the singularly 
perturbed system (19), at 　 = 0, the slow manifold is 
 26115 )(),( pappaphq d −−−== τ . 

The corresponding slow model, )0),,(,,(0 phpfp ττ=′ , 

21 pp =′ , 
)~()()~,~,( 15212 XdYZ papNpMp ωωω ′−+−−=′ , (20) 
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N(p2)=(a1+a6)p2. 
 For the case when .,~~

0 constXX =′=′ ωω  

.,~~ constZCZ ==ωω  and 0~ =Yω , the system has 
one isolated equilibrium point at the origin where 

501 /~ ap Xd ω′= . Depending unpon the functions M(⋅) 
and N(⋅) it might have other equilibrium points. A 
Lyapunov function candidcate may be taken as the 
energy-like function 
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The derivative of V(p) along the trajectories of the 
system is given by 
 0)()( 22 ≤−=′ pNppV . (22) 
Thus, )( pV ′ is negative semidefinite. According to the 
theorems of Barbashin and Krasovskii, the only 
solution of the system that can stay in S={p∈ℜ2 | p2=0} 
for all τ is the trivial solution p(τ)=0 if 

)0,~,0( ZCM ω =0,  p1 )0,~,( 1 ZCpM ω  >0 for p1≠0 is 
satisfied , i.e.,  
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when the following condition is held: 
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Thus, the origin is asymptotically stable.  



 For the case when Yω~ , Xω′~  and Zω~  are 
time-varying function, the system has an exponentially 
stable motion ))(),((),( 101011 ττ pppp ′=′  
where , when the following condition is held: 01 =dp
 21
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and a4τ > 0, i.e., -π/4 < p10 < π/4, a3τ=a3cos(p10),  
a4τ=a4cos(2p10), , i.e., D2

42
*
2 YtSS aaa ω+= 4t > 0,  

-π/4 < θ0 < π/4, D3t=D3cos(θ0), D4t=D4cos(2θ0), 
2

42
*
2 YtSS DDD ω+= , 

which can be derived by the same form of Liapunov 
functions as reference. The origin of the corresponding 
boundary-layer system 

 γτγτ
τ
γ

−=+= )0),,(,,(0 phpg
d
d

 (26) 

is exponentially stable uniformly in (τ, p). Since f0 and 
g0 of Eq. (19) also satisfy the conditions of Appendix I, 
we conclude that the origin of the full singularly 
perturbed system (34) is exponentially stable for 
sufficiently small 　 Thus, the necessary and sufficient 
condition for asymptotic stability is the Eq. (25). 
 In Section 4, a three-dimensional dynamic system is 
considered. In Section 5, we consider the case in which 
the mechanical time constant is sufficiently larger than 
the electrical time constant. Thus the system can be 
reduced to a two-dimensional system by singular 
perturbations which simply the order of the model and 
provide tools for improving oversimplified models. 
 
6. The Melnikov analysis 
 In previous studies, both complete nonlinear and 
full singularly perturbed models are considered by the 
Liapunov direct method and singular perturbation 
theory respectively. The stability of a single-axis rate 
gyro mounted in a space vehicle that is spinning with 
uncertain angular velocity ωZ t( )  about the spin axis 
of the gyro is established. In this section, we further 
study the chaotic dynamics of the reduced system as Eq. 
(35), where p1d=0, when the vehicle undergoes 
perturbed harmonic rotation about X-axis, and 
harmonic rotation concerning Z-axis, 
i.e., ,0~ =Yω ),cos(~~

111 δτωνωω ++= ZCZ

)sin(~~
222 δτωνωω ++= XCX , 

)cos(~~
2222 δτωωνωω τ +==′ Xd

d
X ; ii ων and are the 

amplitude and frequency of the perturbed angular 
velocity of vehicle. 
 Here, we assume that the angular velocity of 

vehicle is of small disturbance near a constant angular 
velocity, i.e., .~ constZC =ω , 11 ννε =  and 
a3 0 1ω >> . Changing time variable τω nt = , 

ZCn a ωω ~
3

2 = and 
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In Eq. (20), we have the perturbation form 
&q q1 2= , 
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in the compact form 
 ),()( tqgqfq ε+=&  (28) 
where 
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 For　ε = 0, the system (28), which has centers at (0, 
0) and hyperbolic saddles at , is a 
Hamiltonian system with a Hamiltonian function 

)0,(0 π±=±q

 )cos(
2
1),( 1

2
221 qqqqH −= . (29) 

The Hamiltonian system has homoclinic orbits that 
connect different saddle points q . Hence the 
hyperbolic periodic orbits of the Hamiltonian system, 
for 

0
±

1),( 21 == hqqH , are given by 
 (30) )sec2,sinhtan2(),()( 21 httqqtq hhh ±±== −±±±

 We will compute the Melnikov function for qh
+  

(the computation for qh
−  is identical).  

The Melnikov function is given by [16] 

+++++

∞

∞−

+++

−−−−−=

+= ∫
54321

00 )),(())^(()(

MMMMM

tdtttqgtqftM hh  (31) 

where 

))(cos())(cos()(sin

2sin)()()),((

),())((

202710114

1312210

2

δδ ++Ω−++Ω−

−−−=+

=

+

++++

++

ttbtttqb

qbtqbtqbtttqg

tqtqf

h

hhhh

hh

1
2

12211 8)sec2()()( btdthbtdtqtqbM hh === ∫∫
∞

∞−

∞

∞−

+++ (32.a) 

0))(sinhtan2)(sec2()()( 21222 === ∫∫
∞

∞−

−∞

∞−

+++ tdtthbtdtqtqbM hh (32.b) 

0)))(sinhtan2(2sin()sec2())(2sin()( 31233 === ∫∫
∞

∞−

−∞

∞−

+++ tdtthbtdtqtqbM hh

  (32.c) 
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)]sin()
2

(csc2[

))(cos())(sinhtan2sin()sec2(

))(cos())(sin()(

101
12

14

1014

1011244

δ
π

π

δ

δ

+Ω
Ω

Ω−=

++Ω=

++Ω=

∫
∫
∞

∞−

−

∞

∞−

+++

thb

tdtttthb

tdtttqtqbM hh

(32.d) 

)]cos()
2

(sec2[

))(cos()sec2(

))(cos()(

202
2

7

1027

102275

δ
π

π

δ

δ

+Ω
Ω

=

++Ω=

++Ω=

∫
∫
∞

∞−

∞

∞−

++

thb

tdttthb

tdtttqbM h

. (32.e)  

The integral  and  can be evaluated by the 
method of residues. Hence, the Melnikov function 
becomes 

+
4M +

5M

)]cos()
2

(sec2[

)]sin()
2

(csc2[8

)(

202
2

7

101
12

141

543210

δ
π

π

δ
π

π

+Ω
Ω

−

+Ω
Ω

Ω−−−=

−−−−−= ++++++

thb

thbb

MMMMMtM

. (33) 

Suppose that )( 0tM +  has a simple zero, i.e., there 
exists a point 00

~tt =  such that 

 0)~(,0)~( 0
0

0 ≠=
+

+ t
t

MtM
∂
∂

,  

That is  
)~( 0tM +ε = 08)()( 12714 =−Ω−Ω bRbEb εεε ,  (34) 

where 

naab ωε /)( 611 += , ,2
314 / nab ωνε =

nb ωνε /227 Ω−= ,  

)sin()
2

(csc2)( 101
12

11 δ
π

π +Ω
Ω

Ω=Ω thE , 

)cos()
2

(sec2)( 202
2

2 δ
π

π +Ω
Ω

=Ω thR . 

Then the stable and unstable perturbed manifolds that 
are close to homoclinic manifolds of the unperturbed 
system intersect transversely and there exist transverse 
homoclinic orbits. This implies that chaotic dynamics 
may occur through the Smale-Birkhoff homoclinic 
theorem. 

The first case that we are interested approaching in 
here is the case when , i.e., 02 →Ω Xω′~ =0, the vehicle 
undergoes steady rotation about X axis and harmonic 
rotation concerning Z-axis. For simplicity the initial 
time is chosen in such a way that the initial phase is 
δ1=0. For this particular case, the critical forcing 
amplitude c1ν  is given by 

)
2

sinh(
)(4 1

2
13

61
1

Ω
Ω

+
=

π
π

ω
ν

a
aa n

c  (35) 

Another interesting result appears when we 
consider that the vehicle undergoes high frequency 

oscillation about X and the effect of harmonic rotation 
concerning Z-axis can be neglected. For simplicity the 
initial time is chosen in such a way that the initial phase 
is δ2=0. For this particular case, the critical forcing 
amplitude c2ν  is given by 

)
2

cosh(
)(4 2

2

61
2

Ω
Ω
+

=
π

π
ν

aa
c   (36) 

Now we consider the case when the vehicle 
undergoes harmonically in both X-axis and Z-axis. In 
this case, 2/,, 212121 πδδνν =−Ω=Ω= and , the 
critical forcing amplitude c1ν  is given by 

)]2/(sec)2/(csc)//[(

]/)(4[

111
2
13

6121

ΩΩ+ΩΩ

+==

ππω

πνν

hha

aa

n

cc (37) 

It follows from the Melnikov theory that if the forcing 
amplitude cc or 21 ννν > for a given Ω or Ω2 the 
manifolds of the Eq. (27) intersect and may yield 
horseshoe maps near the saddle points. The critical 
forcing amplitude was numerically computed and the 
result is shown in following section. 
 
7. Numerical demonstrations 

In this section, examples are carried out to examine  
the various forms of dynamic behavior of the system for 
the previous analyses by numerical simulation 
techniques. The parameters of the cases are shown in 
the Appendix II. 

To have a visual information in Eq. (35), we have 
plotted in Fig. 3. The case shown corresponds to a rate 
gyro mounted on a space vehicle that undergoes steady 
rotation about X-axis and harmonic rotation concerning 
Z-axis. The critical forcing amplitude c1ν  increases as 
the constant angular velocity ZCω~  increases. The 
presence of a local minimum of the curves, in Fig.3, 
means that the system is easier in the onset of 
homoclinic chaos depending on the perturbed angular 
velocity ZCω~ . Also, the onset of homoclinic chaos 
appears easier when the frequency Ω1 approaches to the 
neighborhood of the natural frequency Ω0=1, for some 
given ZCω~ . In Fig. 4, a plot of the critical forcing 
amplitude c2ν  versus the frequency Ω2 is presented. 
The vehicle undergoes high frequency oscillation about 
X and the effect of harmonic rotation concerning Z-axis 
can be neglected, i.e., the critical forcing amplitude 

c2ν  is unconcerned with ZCω~ . The Melnikov analysis 
gives a lower-bound on chaotic behavior. When the 
vehicle undergoes harmonically in both X-axis and 
Z-axis, the critical forcing amplitude versus the 
frequency Ω1 from Eq. (37) is shown as Fig. 5 for 

ZCω~ =1000 (⎯), ZCω~ =1500 (---), ZCω~ =2000 (⋅⋅⋅) 
and ZCω~ =2500 (-.). As we have done the same study as 
in Fig. 5, it is easy to see what is the difference between 
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these two cases: the critical forcing amplitude c1ν  is 
lower than in the previous case and the one that 
minimizes the critical forcing amplitude as the 
frequency Ω1 is closely the natural frequency Ω0=1, for 
some given ZCω~ . 
  
8. Conclusions 
  An analysis is presented to a single-axis rate gyro 
subjected to linear feedback control when the vehicle is 
simultaneously spinning with uncertain angular velocity 

)(tZω  about its spin axis and accelerating )(tXω&  
with respect to the output axis of the gyro. By using the 
Liapunov direct method, the conditions sufficient for 
stability are given as Eq. (19). Here, the term 

 increases the effective torsional spring 
torque, such that the stability domain of the perturbed 
angular velocity 

)(2
4 tD Ytω

)(tZω  becomes larger. For the 
autonomous case in which Zω  and Xω& are steady, both 
stability and degeneracy conditions of the fixed point 
are derived by the Routh-Hurwitz criterion in section 3. 
The necessary and sufficient conditions for asymptotic 
stability are obtained as Eq. (33). In section 4, the 
electrical time constant is much smaller than the 
mechanical time constant is assumed. The stability of a 
full singular perturbed system from the reduced and 
boundary-layer systems are studied in an autonomous 
system by the Liapunov direct method for sufficiently 
small ε. In section 5, we obtain criteria for existence of 
chaos in the reduced system by applying Melnikov 
method. Plots of the critical forcing amplitude versus 
the frequency of the perturbed motion are presented for 
some specific examples. Its critical forcing amplitude is 
minimized when the perturbed frequency is near the 
normalized natural frequency.  
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Appendix I 
 The stability analysis that describes a procedure for 
constructing Liapunov functions for full singularly 
perturbed system as follows: 
 Consider the singularly perturbed nonautonomous 
system 
 ),,,(),,,,( εεε zxtgzzxtfx == &&  
Assume that the following assumptions are satisfied for 
all ( , , ) [ , ) [ , ]t x Brε ε∈ ∞ × ×0 0 0  
(1) f t and g t( , , , ) ( , , , )0 0 0 0 0 0ε ε= = . 
(2) The equation 0 0= g t x z( , , , )  has an isolated root 
z h t x= ( , )  such that h t x( , ) = 0. 
(3) The functions f, g and h and their partial derivatives 

up to order 2 are bounded for z-h(t,x) ∈ Bρ. 
(4) The origin of the reduced system 

 7



& ( , , ( , ), )x f t x h t x= 0  is exponentially stable. 
(5) The origin of the boundary-layer system 

dy
d

g t x y h t x
τ
= +( , , ( , ), )0  is exponentially 

uniformly stable in (t, x). 
Then there exists ε* > 0 such that, for all ε < ε*, the 

origin of (I1) is exponentially stable. 
 
Appendix II 
The values of gyro parameters: 
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 Te=1/D5=0.04, Tm=D5/(D1D5+D2D7)=0.714, 
a1=D1Tm=0.714, a3=D3Tm

2=1020, a6=D2D7Tm/D5=0.286, 

ZCn a ωω ~
3= . 
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Fig. 1. Configuration of the single-gimbal control 
moment gyro for the simple pendulum 
 

 
Fig. 2. The single-gimbal control moment gyro 
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Fig. 3. Plot of the critical forcing amplitude versus the 
frequency Ω1 from Eq. (35) for ZCω~ =1000 
(⎯), ZCω~ =1500 (---), ZCω~ =2000 (⋅⋅⋅) and ZCω~ =2500 
(-.). 
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Fig. 4. Plot of the critical forcing amplitude versus the 
frequency Ω2 from Eq. (36). 
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Fig. 5. Plot of the critical forcing amplitude versus the 
frequency Ω1 from Eq. (37) for ZCω~ =1000 
(⎯), ZCω~ =1500 (---), ZCω~ =2000 (⋅⋅⋅) and ZCω~ =2500 
(-.). 
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