O 0 0o O

L]
NSC 89 2218
89 08 01

U
E 164 001
9 0 31



CONTROLLING CHAOS AND NONLINEAR DYNAMIC ANALY SIS OF A TWO-AXIS
RATE GYRO WITH FEEDBACK CONTROL MOUNTED ON A SPACE VEHICLE
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Abstract

An analysis is presented of a two-axis
rate gyro subjected to linear feedback control
mounted on a space vehicle that is spinning
with uncertain angular velocity wAf) about
its spin of the gyro. For the autonomous case
in which wzis steady, the stability analysis of
the system is studied by Routh-Hurwits
theory. For the non-autonomous case in
which w; is sinusoida function, this system
is a strongly nonlinear damped system
subjected to parametric excitation. By
varying the amplitude of sinusoidal motion,
periodic and chaotic responses of this
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parametrically excited nonlinear system are
investigated using the numerical simulation.
The results, Symmetry-breaking bifurcations,
period-doubling bifurcations, and chaotic
behavior of the system are observed by
various numerical techniques such as phase
portraits, Poincaré maps, average power
spectra, and Lyapunov exponents. In addition,
chaotic motions of this system can be
suppressed and changed into regular motions
by a suitable constant motor torque.
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I ntroduction

A number of studies over the past few
decades have shown that chaotic phenomena
are observed in many physical systems that
possess both non-linearity and externa
excitation [1]. The nonlinearity of a system,
through the various system parameters,
exhibits a variety of nonlinear behaviors
including jump phenomenon, multiple
attractors, subharmonic vibrations, symmetry
breaking-bifurcations, period-doubling
bifurcations, crisis and chaos [2]. In addition,
a symmetry-breaking bifurcation occurring
before a period-doubling bifurcation, and the
appearance of chaos amidst a cascade of
period-doubling bifurcations have been
observed in driven damped pendulums or
Duffing's oscillators by MacDonad and Réty
[3]. In agyroscopic system, asingle-axis rate
gyro mounted on a space vehicle free to
move in various ways also exhibits complex
nonlinear and chaotic motions. The nonlinear
nature and chaotic motion of a single-axis



rate gyro were investigated by Ge[4] when
the vehicle is spinning sinusoidally with
respect to the spin axis of the gyro. This
system is characterized by parametric
excitation and exhibits complex nonlinear
phenomena in the presence of sinusoida
excitation, including subharmonic vibrations,
Hopf bifurcation, symmetry-breaking
bifurcations, a series of period-doubling
bifurcations, and chaos. In practice, chaotic
motions are undesirable. Ge[5] used resonant
parametric perturbations to change a chaotic
motion into aregular one.

In this paper, an analysis is presented of
a two-axis rate gyro subjected to linear
feedback control mounted on a space vehicle
that is spinning with uncertain angular
velocity wAf) about the spin of the gyro.
Here, Routh-Hurwits theory [6] is applied to
analyze the stability of the autonomous case
in  which wy; is seady. For the
non-autonomous case in which wz is
sinusoidal function, a number of numerical
techniques are used to detect the existence of
symmetry-breaking bifurcations, period-
doubling bifurcations, and chaos of the
parametrically excited nonlinear system. The
natures of the periodic and chaotic motions
are shown in phase plane diagrams, Poincaré
maps and average power spectra. The
qualitative bifurcation diagrams, parametric
diagrams and quantitative  Lyapunov
exponents in parametric space are also
computed to determine the vaues of
bifurcation points as well as chaos onset. In
addition, chaotic motions of this system can
be suppressed and changed into regular
motions by a suitable constant motor torque.

Numerical Simulations and Discussion

We consider the model of a two-axis
rate gyro mounted on a space vehicle as
shown in Fig. 1. Let X, Y, Zbe a set of axes
attached to the platform and x, A, z be gimbal
axes. The differential equations of atwo-axis
gyro with feedback control are
4 +2a:d + kg + af + NF(q 1) = O,
Ko+ 2bif + bof - bsd + NFy(gf,t) =0
where k=1,d=dgldt,f = df Idt; NF.(gf,t)
and NF,(q.f,t), shown in Appendix A.

With the system parameter f varied, the
system results obtained by numerical
integration in the phase planes, Poincaré
maps, average power spectra, bifurcations
and Lyapunov exponents. Hopf bifurcation
occurs when the parameter /15.4, the
original equilibrium point becomes unstable
and a period-2T stable symmetric limit cycle
arises as shown in Fig.2, where T=2p/w. A
system with a symmetric nonlinear function
can undergo either a symmetry-breaking
bifurcation for the symmetric solution of the
system or a period-doubling bifurcation for
the asymmetric solution of the system. When
5295, a symmetry-breaking bifurcation
occurs. After this bifurcation, the origina
stable period-2T attractor becomes unstable,
a pair of stable period-2T attractors arise and
invert each other as shown in Fig.3 where =
31.5. As the parameter f increases further
across /32, a stable periodic orbit appears
with double the period of the origina orbit,
thereby indicating a period-doubling (flip)
bifurcation. When the parameter is increased,
a cascade of flip bifurcations occurs and
leads to the onset of chaos. At £34, the
chaotic attractor abruptly disappears and a
period-6T symmetric orbit appears, as shown
in the phase plane and average power
spectrum (Fig.2,4).

To investigate bifurcation further, a
Poincaré plane was used to display the
bifurcation diagram, which shows Poincaré
fixed points x, plotted against the system

parameter . The Hopf bifurcation, symmetry
-breaking bifurcation, and period-doubling
bifurcation are clearly shown. As the system
parameter f is gradually increased through
the parametric space, the bifurcation diagram
obtained shows different types of
bifurcations and chaos (Fig.5). The Hopf
bifurcation at £15.4, the symmetry-breaking
bifurcation at $29.5, and the period-doubling
bifurcation at =32, as observed earlier. To
investigate the periodic and chaotic motions
in the bifurcation diagram further, the phase
planes, Poincaré maps, and power spectra are
used. After a cascade of period-doubling
bifurcations, the dual response becomes
chaotic rather than periodic for ~=32.5. When
=33, conjunction of the two inverse chaotic
attractors creates a larger attractor. With the



parameter increased, a large-amplitude
chaotic motion appears in the phase plane,
Poincaré map, and power spectrum as shown
in Fig.6, where /=36.3. The power spectrum
of a chaotic motion is a continuous board
spectrum.

To confirm the chaotic dynamics, a
quantitative Lyapunov-exponent spectrum
was performed. The algorithm for calculating
the Lyapunov exponents was developed by
Wolf et a. [7]. A spectrum of the largest
Lyapunov exponent as a function of the
parameter fis shown in Fig.7. As one of the
Lyapunov exponents is positive, the motion
Is characterized as chaotic. When at least one
Lyapunov exponent /, = O exists, motions
are not stationary. For periodic motions, the
Lyapunov exponents are non-positive and
include only one zero Lyapunov exponent,
while one negative exponent becomes zero
when one type of periodic motion bifurcates
to another.

Physically, chaos may be desirable or
undesirable, depending on the application. In
this case, we used a feedback constant
control torque with the assistance of the
Lyapunov exponent calculations to bring the
system from a chaotic regime to a regular.
For changing the parameter k form 0.5 to
1.5, there are the bifurcation diagram and the
spectrum of the largest Lyapunov exponents
| max & the function of the stiffness
coefficient k in Fig.8. As / ;ax < 0 for the
suitable k; the system is periodic.

Conclusions

In this paper, a two-axis rate gyro with
sinusoidal velocity about its spin axis Z
exhibits the nonlinear characteristic of both
sin, cos function and parametric excitation
when the parameter is varied. For the
autonomous case in which w; is steady, the
stability conditions were derived by the
Routh-Hurwitz criterion. A variety of
parametric studies were performed to analyze
the behavior of periodic attractors route to
chaos via distinct bifurcations by using the
numerical simulations. The behaviors of a
symmetry-breaking precursor to period-
doubling bifurcations and a cascade of
period-doubling route to chaos occurred in

this system. The occurrence of the chaotic
motion of the full system is aso detected by
calculating bifurcation diagrams, power
spectral diagrams and Lyapunov exponents.
In addition, we consider a suitable feedback
constant force torque to suppress chaos in the
system by computing Lyapunov exponents.
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Appendix A
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Fig.1 A two-axisrate gyro.
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Fig.2 Two inversion-symmetric attractors. a period-2T
attractor for =18, a period-6T attractor for =
34 where the symbols ‘+" and "’ indicate one
period- T of w;= feinwt.
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Fig.3 A dual period-2T attractor for /=31.5.
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Fig.4 An average power spectrum of Fig. 4 for /=34.
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Fig.5 The bifurcation diagram.
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Fig.6(a) A symmetric chaotic attractor for /=36.3.
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Fig.6(b) A symmetric chaotic attractor for ~36.3.
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Fig.6(c) An Average power spectrum for /=36.3.
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Fig.7 The largest Lyapunov exponents.
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Fig.8 The bifurcation diagram and the largest
Lyapunov exponent as afunction of k.
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