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一、中文摘要

本論文將對一飛行器上的帶回饋之雙
軸速率陀螺儀作詳細動力分析，此時飛行
器相對於自轉軸作ωZ(t)轉動。當飛行器相
對 於 自 轉 軸 作 穩 態 轉 動 時 ， 利 用
Routh-Hurwits理論對此自治系統作穩定性
分析，給出系統參數穩定條件。當飛行器
相對於自轉軸作簡諧轉動時，這系統為參
數激勵強非線性耗散系統，隨著系統參數
變動下，系統呈現規則與混沌反應行為。
經由相軌跡、龐加萊截面、平均功率普與
李雅普若夫指數等數值模擬方法來分析系
統，發現隨系統參數變化，系統存在數種
不同型態的解與分歧行為如 Hopf分歧、對
稱分歧與倍週期分歧，並得到系統混沌行
為。並在適當的力矩回饋控制下能有效地
抑制混沌運動。

關鍵詞：速率陀螺儀、分歧、混沌

Abstract

An analysis is presented of a two-axis 
rate gyro subjected to linear feedback control 
mounted on a space vehicle that is spinning 
with uncertain angular velocity ωZ(t) about 
its spin of the gyro. For the autonomous case 
in which ωZ is steady, the stability analysis of 
the system is studied by Routh-Hurwits
theory. For the non-autonomous case in 
which ωZ is sinusoidal function, this system 
is a strongly nonlinear damped system 
subjected to parametric excitation. By 
varying the amplitude of sinusoidal motion,
periodic and chaotic responses of this 

parametrically excited nonlinear system are 
investigated using the numerical simulation.
The results, Symmetry-breaking bifurcations, 
period-doubling bifurcations, and chaotic 
behavior of the system are observed by 
various numerical techniques such as phase 
portraits, Poincaré maps, average power 
spectra, and Lyapunov exponents. In addition, 
chaotic motions of this system can be 
suppressed and changed into regular motions 
by a suitable constant motor torque.

Keywords: Rate Gyro, Bifurcation, Chaos

二、Introduction

A number of studies over the past few
decades have shown that chaotic phenomena 
are observed in many physical systems that 
possess both non-linearity and external 
excitation [1]. The nonlinearity of a system, 
through the various system parameters, 
exhibits a variety of nonlinear behaviors 
including jump phenomenon, multiple 
attractors, subharmonic vibrations, symmetry 
breaking-bifurcations, period-doubling 
bifurcations, crisis and chaos [2]. In addition, 
a symmetry-breaking bifurcation occurring 
before a period-doubling bifurcation, and the 
appearance of chaos amidst a cascade of 
period-doubling bifurcations have been 
observed in driven damped pendulums or 
Duffing’s oscillators by MacDonald and Räty 
[3]. In a gyroscopic system, a single-axis rate 
gyro mounted on a space vehicle free to 
move in various ways also exhibits complex 
nonlinear and chaotic motions. The nonlinear 
nature and chaotic motion of a single-axis 
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rate gyro were investigated by Ge[4] when 
the vehicle is spinning sinusoidally with 
respect to the spin axis of the gyro. This 
system is characterized by parametric 
excitation and exhibits complex nonlinear 
phenomena in the presence of sinusoidal 
excitation, including subharmonic vibrations, 
Hopf bifurcation, symmetry-breaking 
bifurcations, a series of period-doubling 
bifurcations, and chaos. In practice, chaotic 
motions are undesirable. Ge[5] used resonant 
parametric perturbations to change a chaotic 
motion into a regular one. 

In this paper, an analysis is presented of 
a two-axis rate gyro subjected to linear 
feedback control mounted on a space vehicle 
that is spinning with uncertain angular 
velocity ωZ(t) about the spin of the gyro.
Here, Routh-Hurwits theory [6] is applied to 
analyze the stability of the autonomous case 
in which ωZ is steady. For the 
non-autonomous case in which ωZ is 
sinusoidal function, a number of numerical 
techniques are used to detect the existence of 
symmetry-breaking bifurcations, period-
doubling bifurcations, and chaos of the
parametrically excited nonlinear system. The 
natures of the periodic and chaotic motions 
are shown in phase plane diagrams, Poincaré 
maps and average power spectra. The 
qualitative bifurcation diagrams, parametric 
diagrams and quantitative Lyapunov 
exponents in parametric space are also 
computed to determine the values of 
bifurcation points as well as chaos onset. In 
addition, chaotic motions of this system can 
be suppressed and changed into regular 
motions by a suitable constant motor torque.

三、Numerical Simulations and Discussion

  We consider the model of a two-axis 
rate gyro mounted on a space vehicle as 
shown in Fig. 1. Let X, Y, Z be a set of axes 
attached to the platform and ξ, η, ζ be gimbal 
axes. The differential equations of a two-axis
gyro with feedback control are
θ&&  + 2α1θ& + kθ + α2φ&  + NF1(θ,φ,τ) = 0,
φ&& + 2β1φ& + β2φ - β3θ& + NF2(θ,φ,τ) = 0 
where k=1,θ&=dθ/dτ,φ& = dφ /dτ; NF1(θ,φ,τ) 
and NF2(θ,φ,τ), shown in Appendix A.

With the system parameter f varied, the 
system results obtained by numerical 
integration in the phase planes, Poincaré 
maps, average power spectra, bifurcations 
and Lyapunov exponents. Hopf bifurcation
occurs when the parameter f≈15.4, the 
original equilibrium point becomes unstable
and a period-2T stable symmetric limit cycle 
arises as shown in Fig.2, where T=2π/ω. A 
system with a symmetric nonlinear function 
can undergo either a symmetry-breaking 
bifurcation for the symmetric solution of the 
system or a period-doubling bifurcation for 
the asymmetric solution of the system. When 
f≈29.5, a symmetry-breaking bifurcation 
occurs. After this bifurcation, the original 
stable period-2T attractor becomes unstable, 
a pair of stable period-2T attractors arise and 
invert each other as shown in Fig.3 where f= 
31.5. As the parameter f increases further 
across f≈32, a stable periodic orbit appears 
with double the period of the original orbit, 
thereby indicating a period-doubling (flip) 
bifurcation. When the parameter is increased, 
a cascade of flip bifurcations occurs and 
leads to the onset of chaos. At f≈34, the 
chaotic attractor abruptly disappears and a 
period-6T symmetric orbit appears, as shown 
in the phase plane and average power 
spectrum (Fig.2,4).

To investigate bifurcation further, a 
Poincaré plane was used to display the 
bifurcation diagram, which shows Poincaré 
fixed points xp  plotted against the system 
parameter f. The Hopf bifurcation, symmetry
-breaking bifurcation, and period-doubling 
bifurcation are clearly shown. As the system 
parameter f is gradually increased through 
the parametric space, the bifurcation diagram 
obtained shows different types of 
bifurcations and chaos (Fig.5). The Hopf 
bifurcation at f≈15.4, the symmetry-breaking 
bifurcation at f≈29.5, and the period-doubling
bifurcation at f=32, as observed earlier. To 
investigate the periodic and chaotic motions 
in the bifurcation diagram further, the phase 
planes, Poincaré maps, and power spectra are 
used. After a cascade of period-doubling 
bifurcations, the dual response becomes 
chaotic rather than periodic for f=32.5. When 
f=33, conjunction of the two inverse chaotic 
attractors creates a larger attractor. With the 
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parameter increased, a large-amplitude 
chaotic motion appears in the phase plane, 
Poincaré map, and power spectrum as shown 
in Fig.6, where f=36.3. The power spectrum 
of a chaotic motion is a continuous board 
spectrum.

To confirm the chaotic dynamics, a 
quantitative Lyapunov-exponent spectrum 
was performed. The algorithm for calculating 
the Lyapunov exponents was developed by 
Wolf et al. [7]. A spectrum of the largest 
Lyapunov exponent as a function of the 
parameter f is shown in Fig.7. As one of the 
Lyapunov exponents is positive, the motion 
is characterized as chaotic. When at least one 
Lyapunov exponent λi  = 0 exists, motions 
are not stationary. For periodic motions, the 
Lyapunov exponents are non-positive and 
include only one zero Lyapunov exponent, 
while one negative exponent becomes zero 
when one type of periodic motion bifurcates 
to another.

Physically, chaos may be desirable or 
undesirable, depending on the application. In 
this case, we used a feedback constant 
control torque with the assistance of the 
Lyapunov exponent calculations to bring the 
system from a chaotic regime to a regular.
For changing the parameter k form 0.5 to 
1.5, there are the bifurcation diagram and the 
spectrum of the largest Lyapunov exponents 
λmax as the function of the stiffness 
coefficient k in Fig.8. As λmax < 0 for the 
suitable k, the system is periodic.

四、Conclusions

In this paper, a two-axis rate gyro with 
sinusoidal velocity about its spin axis Z
exhibits the nonlinear characteristic of both 
sin, cos function and parametric excitation 
when the parameter is varied. For the 
autonomous case in which ωZ is steady, the 
stability conditions were derived by the 
Routh-Hurwitz criterion. A variety of 
parametric studies were performed to analyze 
the behavior of periodic attractors route to 
chaos via distinct bifurcations by using the 
numerical simulations. The behaviors of a 
symmetry-breaking precursor to period-
doubling bifurcations and a cascade of 
period-doubling route to chaos occurred in 

this system. The occurrence of the chaotic 
motion of the full system is also detected by 
calculating bifurcation diagrams, power 
spectral diagrams and Lyapunov exponents. 
In addition, we consider a suitable feedback 
constant force torque to suppress chaos in the 
system by computing Lyapunov exponents.
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Appendix A
NF 1(θ,φ,τ)=-(A+B1-C1)(-φ& c2ωZtωn+(-ωn

2 φ& 2s1+s1c2
2ωZt

2+2φ& c2ωZt

ωnc1)c1)/[(A+A1)ωn
2]-Hc(-ωnφ& c1-s1c2ωZt+φ& ωn)/ [(A+A1)ωn

2]-(φ& c2

×ωZtωn +s2ωn tZω& )/ωn
 2

NF 2(θ,φ,τ)=((s1
2 θ& c2ωZtωnA2-k2φs1

2- φ& d2ωns1
2)C1+(-ωZt

2s2A2+ωZt

θ& ωnA2)c2(A+A1)+(2C1s1φ& θ& ωn
2A2-C1s1c2 tZω& ωnA2+(-ωZt θ& ωn

×A2+ωZt
 2s2A2)c2C1c1)c1+(θ& ωnC1s1

2+θ& ωnA2+(s2ωZt A2-θ& ωnA2)c1)

×Hc+(k2φ+(-s1
2 θ& ωZtωnA2+s1

2s2ωZt
 2A2)c2+ φ& d2ωn+C1s1

2 θ& c2×ωZt

ωn+(-ωZt
 2s2+ωZtθ& ωn)c2(A+A1)+(-2s1φ& θ& ωn

2A2+2C1s1φ& θ& ωn
2+

(s1c2ωnA2-C1×s1c2ωn) tZω& +(-k2φ+c2ωZtθ&ωnA2-φ& d2ωn+(ωZt
 2

×s2-ωZtθ& ωn)c2C1)c1)c1+(s2ωZt-θ& ωn+c1θ&ωn)c1Hc+((s1
2s2ωZt

2

-s1
2θ& ωZt ωn)c2+(-2s1φ& θ& ωn

2+s1c2 Zω& ωn+c2ωZtθ& ωnc1)c1)(A
+B1))(A+B1))/[((A+B1)c1

2+C1s1
2+A2)(A+B1+A2)ωn

2]
where s1 = sinθ, s2 = sinφ, c1 = cosθ, c2 = cosφ, etc. ωZt = fsinωτ, ω

= ωf /ωn,
tZω&
= dωZt/dτ.
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Fig.2 Two inversion-symmetric attractors: a period-2T
attractor for f=18, a period-6T attractor for f= 
34 where the symbols ‘+’ and ‘×’ indicate one 
period-T of ωZ = fsinωτ.
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Fig.3 A dual period-2T attractor for f=31.5.
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Fig.4 An average power spectrum of Fig. 4 for f=34.

Fig.5 The bifurcation diagram.
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Fig.6(a) A symmetric chaotic attractor for f=36.3.
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Fig.6(b) A symmetric chaotic attractor for f=36.3.
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Fig.6(c) An Average power spectrum for f=36.3.
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Fig.7 The largest Lyapunov exponents.

Fig.1 A two-axis rate gyro.

Fig.8 The bifurcation diagram and the largest 
Lyapunov exponent as a function of k.
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