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Percolation Calculation of Hopping Conduction
in Disordered Systems
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Abstract

We have developéd a percolation calculation method for hopping conduction
in disordered systems. The method incorporates tile assumption that coherent
hopping to non-nearest neighbor sites takes place via intermediate sites. To assess
numerical accixracy of the method, the result is compared with that of a
corresponding resistor circuit simulation, for the case of a bec lattice with hopping
up to next nearest neighbors, and good agreement is obtained between the two. The
method is useful for the study of low-temperature hopping transport in disordered

systems.
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I. Introduction
The electrical hoﬁping conductivity of disordered system in low temperature

has been observed widely to obey a “fractional temperature dependence”, with

ox exp[— (1,/TY J, where the exponent n=1~1/4. The well-known granular metal

have been many theoretical studies on the origin of the n=1/2 behavior in
~ disordered systems[1-11]. In one of the frequently discussed models, a granular
metal is regarded as a resistor network, with each resistor corresponding to a
hopping between two sites. Within this model, the system resistance can be
obtained by circuit simulations which solve Kirchoff equations.[8,11] However, in
the simulation, the network size must be adjusted accordingly to ensure that the
calculation is free of finite size effects. For exarriple, if the linear size required for
the nearest-neighbor (n.n.)-hopping-dominated transport equals N sites, then that
for the next-nearest-neighbor (n.n.n.)-hopping-dominated transport must be at least
2N, since the relevant microscopic scale is doubled when going from n.n. hoppings
to n.n.n. hopping. Therefore, for the low temperature range where long-range
hopping are important, the size consideration imposes the requirement of large

computer memory and CPU time.

Fortunately, in many cases, the networks of granular metal consist of
distributions of widely varying resistances, and a good approximation, i.e. the
critical percolation path method developed for variable-range-hopping
problems,[12] offers a useful solution to the computational problem. This method
has been applied to granular systems with only, n.n. hopping included|3,11] ahd
with non-nearest-neighbor hopping included as well. [5] While the latter study is
able to covef a broad range of temperatures, it neglects possible intrusion of other

sites into the path of tunneling between two sites.

In this paper, we shall remove the foregoing appfoxiniation and develop a

percolation calculation suitable for disordered systems, in which case a tunneling
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path between non-nearest neighbors often traverses through intermediate sites. In
Sec. 11, we shall prgsenf a percolation method, vwhi'ch incorporates the foregoing
constraint. In Sec. III,'the result of percolation calculation shall be compared to the
corresponding circuit simulation for assessment of its accuracy. In Sec. IV, we

conclude the study.

IL. Percolation theory

We shall demonstrate our theoretical method with a calculation including
hopping up to n.n.n. Firstly, we consider the charge transfer in a 3-site system with
oxide barriers between the sites, as shown in Figure 1(a). There are two ways for
an electron to transport from site 1 to site 3. One consists of two consecutive n.n.
hopping during which the electron relaxes by inelastic"scattering in site 2. This can
be regarded as two resistors, R,zn and R, in series, denoted as “~+~". The other is a
coherent n.n.n. hopping, corresponding to a resistor R,;, denoted as “~. For

“~+~”, we have[15]

R.("~ +~")= Ry + Ry A
=R, exp[zaSIZ + EIZ/kBT]+ R, exp[2a5'23 + E23/kBT]’

(1)
where o is the wave function decay constant, and the activation energy[2], kg is the
Boltzmann’s constant. E,, E, and E; are charging energies, S,, and S,, are inter-site
spacing, R,,, Ry, and R,; are hopping resistances, R, is a pre-factor of exponent
resistance.
_E+E,+|E -E|
a 2

The resistance of “~"is -

= Max{E,, E, |. )

R("""”") =R, exp[2a(S,2 +S) )"‘ E;3/kBT]’ 3)
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Overall, we have “~+~" and “~" in parallel, as shown in Figure 1(b), and the

equivalent circuit resistance is taken to be the minimum of the two, that is,

(R, + Ry )/ Ry ~ Min[R("~ + ~"), R("*~")]. 4)
The result of eq. (4) can be viewed as a competition between the two types of
conduction paths, “~+~" and “~~”. Because the variation in R,,, R,; and R,; is
exponential, the equivalent resistance is dominated by either “~+~" or “-’;,
implying that the approximation in eq. (4) is sufficient for the purpose of

calculating InR of a system. Assessment of the accuracy of eq. (4) shall be provided

by the numerical result presented in Sec. III.

(a)

3

I

Figure 1. (a) A three-site system showing the initial, _intermediaté, and final states
for both n.n. and n.n.n. hoppings. (b) The equivalent circuit — the serial

resistance R,,*+R,;and the resistance R, in parallel.
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Next, we perform the critical path analysis. For illustration, here we use a 2-
dimensional (2D) triangular lattice of sites to sketch the idea. We consider the
lattice as consisting of the clusters shown' in Figure 2. Each cluster contains a
center site (site I), the shell of n.n. (site A), and the shell of n.n.n.(sites B and C).
An n.n.n. here is defined as the site which can be reached from site I by two
consecutive n.n. hopping. For each B, we have only one path connecting I to B
which consists of two n.n. hopping, and its path number P, is defined as 1.
Correspondingly, there are one “~+~" and one “~~" between I and each B. Other
paths to B involve more than 2 n.n. hopping, and are unaccounted for here, as they
probably give much higher resistances. Inclusion of these paths, however, is

straightforward within our framework.

Figure 2. A cluster illustrating the percolation model. There are 6 n.n. sites (“A”)
and 12 n.n.n. sites (“B” and “C”) surrounding the center site (“I”). For
“B”, there are Zy=6 sites, and the path number P,=1. For “C”, there are

Z:=6 lsites, and the path number P.=2.
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The minimum of the foregoing two resistances is taken to be the equivalent
resistance between I and B, denoted as R® and described in eq. (4). For cachb C,
there are two paths connecting I to C as shown in‘the figure, and, correspondingly,
two “~+~" and two “~~" between I and C. Therefore, we have 4 resistances in
parallel, and the equivalent resistance, R , between I and C, is taken to be the

minimum of the 4 resistances

R¢ NMin[Rl’cl ..~+~..),ch1 (.. -n)’Rl’c2 (. ~n),Rl’c2 (.. Mn)], v 5)
where P°' and P denote the two paths connecting I to C, respectively. Again, as eq.
(4), this equation is accurate enough for the calculation of InR. Now, consider the
percolation problem for the 2D lattice with the clusters as building blocks. We
suppress the internal structure of each cluster, and regard each one as nothing-but a
radial structure with resistors R® and RC. If we denote the 9ritical resistance of the
2D system as R_,.,,, the percolation condition is that the fraction of resistances in a
cluster that are less than Rc,,-tica, must, on the average, be equal to the critical

threshold value b, in the corresponding classical bond percolation problem. In

short,
b~
© d-1
IdE:p(El)IdEzP(Ez )JdEJp(E3)_[dS,2P(S,2)IdSBP(Sn)@(RC - RB)
=Z, P
IdElp(El)
[ B, [ o(E, ) [, p(E, ) [, P(S.,) [, P(S:: Yol - B)
+Z :

Tae, (e

©
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where d is the dimensionality of the lattice, Z, and Z are the total numbers of B

and C sites, respectively, E, = k;TIn(R_,.../R,), 0 (E)is the energy distribution,

and P(S) is the inter-site spacing distribution. G(Rc - R”) is a Heaviside step

function. The last equation can be solved with numerical simulations to obtain
InR .., in the following way. For éxample, in the case of the particular cluster
structure shown in Figure 2, we firstly set up the charging energies of I, A, B, and
C, and the spacings between I and A, A and B, and A and C, according to some
prescribed distributions, and associate resistors according to eq. (1) and (3) with all
the paths cdnnecting Ito B and I to C (both via A). We then calculate the effective
resistances, R® and R€ according to eq. (4) and (5), respectively. Finally, we réquire .
that the fraction of R® and R, which are less than the critical resistance R_,,, is

equal to b, as described in eq. (6). This allows us to find R We take R .., as

critical®

the system resistance R.[13]

The above method can be extended to any random or regular lattice, e.g., sc,
bec, fec, and so on, with corresponding coordination number Z and path number P. -
In addition, the method can include the next-next-nearest-neighbor (n.n.n.n.)
hopping and etc. In the case of n.n.n.n. hopping, for example, three types of
resistances appear in the cluster, the serial resistance, ~+~+~”", consisting of three
consecutive n.n. hoppings, the mixed resistances, “~+~~" and “~~+~", consisting
of one n.n. hopping and one coherent n.n.n. hopping, and the cohérent

‘resistance ”~~~"-consisting of a coherent n.n.n.n. hopping.
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II1. Results and discussion

To assess whether the presented percolation theory is accurate, we have
calculated the hopping resistance for a 3-dimensional bcc lattice, and Kcompared it
with the corresponding resistor circuit simulation. The calculation includes
hoppings up to n.n.n. We take @ =0.7A"' from general case of granular metal system,
and critical threshold value b.=d/(d-1)=1.5 for a 3-dimensional bcc lattice. Both the

charging energy and the intersite spacing are taken to obey log-normal
distributions’ with the means E=159 meV and S,,=124, and the widths z; = 0.6

and u; =0.6, respectively.

In the resistor circuit simulation, the lattice size is fixed at 15x15x15. We
average over a total number of 10 configurations for each resistance calculation,
and have checked that the lattice size and the number of configurations are

sufficient to give a convergent result.

In the percolation simulation, there are three types of n.n.n. sites on the cluster,
B sites in the direction of (1,0,0), S sites in the direction of (1,1,0), and C sites in
the direction of (1,1,1). The calculation is done with 20,000 cluster configurations

to ensure numerical convergence.

The results of In(R/R,) versus I/ JT are presented in Figure 3. The result with

only n.n. hoppings is included for reference. As shown here, when the temperature
lowers, the n.n. hopping-ohly results begin to bend upwards, showing deviation
fr_om the n=1‘/2 law towards a thermal activation behavior due to the pinniﬁg of
hopping at n.n. The numerical difference between_thé n.n. hopping-only and the
n.n.n. hopping-included results is substantial at low temperatures. With the n.n.n.

hopping, we avoid the hopping-pinning problem. We also note that the percolation
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result is in remarkable agreement with the corresponding network simulation.

0L ° Network n.n. .
---------- Percolation n.n. oo
o Network n.n.n. o,d°°~
-~ Percolation n.n.n.  ¢°
[t 30 | 6°
S—
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Figure 3. In(R/R,) versus 1/ NT. “O7” - the result of resistor network

simulation with only n.n. hoppings. “[]” - resistor network simulation with
hoppings up to n.n.n. Dotted line - percolation calculation with only n.n. hoppings.

Solid line - percolation calculation with hoppings up to n.n.n.
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IV. Cdnélusion

We have demonstrated a percolation method, which includes a local constraint
for the calculation of hopping resistance in disordered systems. This constraint is
based on the assumption that the effective barrier width for a coherent hopping
between non-nearest neighbor sites is the sum of barrief widths between n.n. sites.
Good numerical agreement is obtained between the percola;tion calculation and the
- corresponding resistor circuit simulation. Because a percolation calculation takes
only a small cluster of sites, it has the advantage of saving memory and computer
CPU time, and is easily adapted to the problem of a random structufe of sites, in
contrast to the circuit simulation. It is our hope that this method will aid future

theoretical studies of hopping transport in disordered systems.
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