Applications of the PS1 function $\psi(x)$ and the Dirichlet L-function to the $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx$

Chung-Yi Lee

Abstract

Applications of the PS1 function $\psi(x)$ and the Dirichlet L-function to the $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx = \frac{\pi}{4} \psi(1) + L'(1)$

Key Words: 1.Euler's constant

- $2.\Gamma$ -function
- 3.PS1 function
- 4. Dirichlet L-function
- 5. Weierstrass's Formula

1. Introduction

To solve the integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx$

is very difficult and obscure. So I decided to study the integral in some depth it turns out that this PS1 Function and L-function to prove.

2.We will show that

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx = \frac{d}{ds} \Gamma(S) L(S) \mid s = 1$$
 (1)

Invoking the well-known formulas

$$\Gamma(1) = 1$$

$$\psi(1) = -\gamma$$

where γ is Euler's constant,

$$\gamma = -\psi(1) = -0.577215664..... \tag{2}$$

Equation(1) becomes

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx = \frac{\pi}{4} \psi(1) + L'(1)$$
 (3)

So the proof of equation (3) will consist of three parts:

- a) to find $\psi(1)$
- b) establishing (1) by expressing L'(1), ψ (1)
- c) the Dirichlet L-function

3. Proof of equation (2), the PS1 function $\frac{d}{dx} \ln \Gamma(x)$, our

starting point is the reciprocal of Weierstrass's formula for $\Gamma(x)$ which is

$$\Gamma(x) = \frac{1}{x} e^{-\gamma x} \int_{n=1}^{\infty} \frac{e^{\frac{x}{n}}}{1 + \frac{x}{n}}$$

$$\tag{4}$$

Where γ is Euler's constant, Taking logarithms gives

and the Dirichlet L-function to the $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx$

$$\ln\Gamma(x) = -\ln x - \gamma x + \ln \frac{\pi}{n} \frac{e^{\frac{x}{n}}}{1 + \frac{x}{n}}$$

$$= -\ln x - \gamma x - \sum_{n=1}^{\infty} \left[\ln(1 + \frac{x}{n}) - \frac{x}{n}\right]$$
(5)

The series on the right above equation is uniformly convergent, permitting term by term differentiation

$$\frac{d}{dx}\ln\Gamma(x) = \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} = -\frac{1}{x} - \gamma + \sum_{n=1}^{10} \frac{x}{n(x+n)}$$
 (6)

For x=1, the series in (6) has the value 1.

So that
$$\psi(1) = -1 - r + \sum_{n=1}^{\infty} \frac{1}{n(1+n)} = -\gamma = -0.5772156649 \cdots$$
 (7)

4.Proof of equation (1). We begin with a general Dirichlet series

$$L(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} \tag{8}$$

Which f(n) is of polynomial growth, will converge absolutely in a half-plane Re(s)>C.

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt = \int_0^\infty e^{-nu} (nu)^{s-1} d(nu)$$

$$= n^s \int_0^\infty e^{-nu} u^{s-1} du$$
(9)

$$\frac{\Gamma(s)}{n^s} = \int_0^\infty e^{-nt} t^{s-1} dt \tag{10}$$

Hence, by absolute convergence, one gets that for Re(s)>C

$$\Gamma(s)L(s) = \Gamma(s) \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = n^s \int_0^{\infty} e^{-nt} t^{s-1} dt \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

$$= \sum_{n=1}^{\infty} f(n) \int_0^{\infty} e^{-nt} t^{s-1} dt$$

$$= \int_0^{\infty} (\sum_{n=1}^{\infty} f(n) e^{-nt}) t^{s-1} dt$$
(11)

Now let
$$z = e^{-t}$$
, $z^n = e^{-nt}$, $t = \ln \frac{1}{z}$, $dt = -\frac{dz}{z}$ to (11)

We have

$$\Gamma(s)L(s) = \int_{0}^{1} (\sum_{n=1}^{\infty} f(n)z^{n}) (\ln \frac{1}{z})^{s-1} \frac{dz}{z}$$
 (12)

Now let us add the restriction that f(n) be a periodic function. So there is a positive integer q such that f(n+q) = f(n) for all n and assume that f(q) = 0.

With these assumptions we have that for |z| < 1

$$\sum_{n=1}^{\infty} f(n)z^{n} \sum_{m=0}^{\infty} \sum_{n=1}^{q-1} f(mq+n)z^{mq+n}$$

$$=\frac{\sum_{n=1}^{q-1} f(n)z^n}{1-z^q} = \frac{g(z,f)}{1-z^q}$$
 (13)

where
$$g(z, f) = \sum_{n=1}^{q-1} f(n)z^n$$
 (14)

(14) to (12) we have

$$L(s)\Gamma(s) = \int_0^1 \frac{g(z,f)(\ln\frac{1}{z})^{s-1}}{1-z^q} \frac{dz}{z}$$
 (15)

Differentiating equation (14) by Leibniz's rule gives

$$\frac{d}{ds}L(s)\Gamma(s) = \int_0^1 \frac{g(z,f)}{1-z^q} (\ln\frac{1}{z})^{s-1} \ln\ln(\frac{1}{z}) \frac{dz}{z}$$
 (16)

Form (16) we have

$$L'(s)\Gamma(s) + L(s)\Gamma'(s) = \int_0^1 \frac{g(z,f)}{1-z^q} (\ln(\frac{1}{z}))^{s-1} \ln \ln(\frac{1}{z}) \frac{dz}{z}$$
(17)

Now if L(s) converges absolutely at s = 1 to (17). This will yield

$$L'(1)\Gamma(1) + L(1)\Gamma'(1) = \int_0^1 g(z, f) \ln \ln(\frac{1}{z}) \frac{dz}{z}$$
 (18)

To Prove (3) we let q = 4 and pick f(n) to be quadratic character (mode 4) that is

$$x_4(n) = \begin{cases} 0 & \text{if} & n = 0 \pmod{4} \\ 1 & \text{if} & n = 1 \pmod{4} \\ 0 & \text{if} & n = 2 \pmod{4} \\ 1 & \text{if} & n = 3 \pmod{4} \end{cases}$$

 x_4 is call the quadratic character (mod 4) because (n,4) = 1

$$x_4(n) = \begin{cases} 1 & \text{if} \exists x, s, t, x^2 = n \pmod{4} \\ -1 & \text{otherwise} \end{cases}$$

While $x_4(n) = 0$ if (n,q)>1

So we have

$$q = 4$$
, $q(z, x) = z - z^3$ to (18)

and equation (18) becomes

$$L'(1) - rL(1) = \int_0^1 \frac{(z - z^3) \ln \ln \frac{1}{z}}{1 - z^4} \frac{dz}{z}$$
$$= \int_0^1 \ln \ln (\frac{1}{z}) \frac{dz}{1 + z^2}$$
(19)

Now let $\frac{1}{z} = \tan x$, $\cot x = z$, $dz = -\csc^2 x dx$ to (19)

We have

$$L'(1) - \gamma L(1) = \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \ln \ln \tan x \frac{(-\csc^2 x) dx}{1 + \cot^2 x}$$
$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \ln \ln \tan x dx \tag{20}$$

5.
$$L(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (21)

Proof: by Taylor's theorem

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$
 (22)

We let x = 1 to (22)

We have

$$\tan^{-1} 1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$
 (23)

So that

$$L(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (24)

Form (7), (24) then (20) become

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx = \frac{\pi}{4} \psi(1) + L'(1)$$

This concludes the proof of equation (3)

REFERENCES

- (1) Bertram Ross Methids of summation, Japan 1987
- (2) E.Artin, The Gamma Function, Holt Rinchart New York 1962
- (3) Ti-chiang Lee Mathematical Methods in Physical sciences
- (4) E.T Whittaker and G.N. Watson Acourse of Modern analysis Cambridge University Press.
- (5) B.Ross, The PS1 function, Math, Mag., 51, 176179(1978)

and the Dirichlet L-function to the $~\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \, \ln \, \tan \, x dx$

利用 PS1 函數及狄西里 L 函數 探討積分 🚆 In Intan xdx

李春宜

摘 要

利用 PS1 函數及狄里西 L-函數表示

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln \ln \tan x dx = \frac{\pi}{4} \psi(1) + L'(1)$$

關鍵字:1.奧衣勒常數

- 2.加瑪函數
- 3.狄里西 L-函數
- 4.PS1 函數
- 5.Weierstrass 定義的加瑪函數

李春宜:工業管理系講師