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Numerical Solution of Buckling and Vibration

in Laminates with Arbitrary Shape Cut Off

Regions

Abstract

The pure global buckling and vibration of four sides simply-supported as well as

clamped anisotropic laminates having an arbitrary shape cut off region that is symmetric with

respect to mid-plane have been studied by treating the remaining cut off regions as uniform

plates with reduced stiffness. The variation of stiffness of the plate is represented by Fourier

series. Computational solutions of the energy principle for the Ritz method in a plate having

arbitrary shape of typical cut off regions under biaxial compressive loads are obtained. Some

numerical results for the pure global buckling load prediction due to its reduced flexural

stiffness for the circular cut off regions and elliptical cut off regions are presented. We find

the normalized pure global buckling load ratio decreases as the cut off regions size increases,

and the nondimensional fundamental frequency value decreases as the cut off regions size

increases.
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1. Introduction
Many researchers have studied

various aspects of buckling load and free

vibration of plates with and without the

delaminations analytically and

experimentally [1-5]. There are three

possible buckling mode types: (a) local

buckling mode, (b) global buckling mode

and (c) coupled global and local buckling

modes that have been examined. Cut off

regions on the top and bottom surfaces of

laminated plate may be necessary for fitting

something on it. Cut off regions may

reduce bending stiffness of laminates,

which lower the compressive load carrying

capacity and natural frequencies. In 2000,

Jane and Hong [6] made a study about the

pure global buckling and vibration of

rectangular laminates with rectangular cut

off regions. An energy approach for the

Ritz procedure was discussed by Whitney

[7] is used to determine the pure global

buckling load and vibration of four edges

simply-supported as well as clamped

anisotropic rectangular laminates that

having arbitrary shape cut off regions. 

The stiffness variation of the plate is

represented by Fourier series [5] and the

partition technique [8] can be utilized to

approach the arbitrary shape of cut off

regions into the rectangular subregions and

right triangular subregions. The Ritz

method using the reduced flexural

stiffnesses to represent the stiffness of the

arbitrary shape of cut off regions under

biaxial compression loads would be

studied. The purpose of this study is to

investigate the effect of arbitrary shape cut

off regions to the pure global buckling and

vibration of rectangular plates by energy

method. The typical anisotropic rectangular

laminates with middle-plane symmetric

arbitrary shape cut off region that is shown

in Figure 1. With coordinates X1(x1,y1),

X2(x3,y1), X3(x3,y4), X4(x2,y3) and X5(x1,y2)

and is used to demonstrate the study

procedures. We partition the arbitrary shape

of cut off region into the rectangular

subregions and right triangular subregions

as shown in Figure 2. Where ζ(k) is the x-

coordinate at middle point of 2c(k) ,2c(k) ,

which is the x-directional length of cut off



sub-region and η(l) is the y- coordinate at

middle point of 2d(l) ,2d(l) , which is the y-

directional length of cut off sub-region.

2. Formulation
2.1 Governing equation

The strain energy of an elastic plate in

terms of Cartesian coordinates x, y system

is written in the following relationship [7]:

where σx and σy are the normal stresses, σxy

is the shear stress, εx and εy are the normal

strains, and εxy is the shear strain. This

strain energy generally contains two parts

of energy, there are strain energy due to

stretching and strain energy due to bending.

By substituting the plane stress constitutive

equations and the strain-displacements

relations into relationship equation (1), we

find that the strain energy for pure

transverse bending of anisotropic laminated

plate can be written in the following

equation:

where W is the transverse displacement,

are the flexural stiffnesses.

The potential energy of external

inplane loads due to a transverse deflection

is given as follows:

where are initial

external inplane force resultants applied to

the rectangular plane in a prebuckled state,

are the midplane strains

due to the transverse deflection. We

consider the initial axial loads acting on the

plane in the x- and y- directions, these

external loads are represented as:

For considering the large transverse

deflection in the buckled state, we have

nonlinear terms in the strains involving



transverse displacement W as follows:

By substituting equations (4) and (5)

into equation (3), we arrive at the following

potential energy equation:

The kinetic energy of an elastic plane

in terms of a Cartesian coordinate x, y, z

system is written in the following

relationship:

where is the density of the k-th layer in

laminated plate, u,v and W are the

displacement components in the x, y and z

directions respectively, t is the time. For

considering the tangential displacement u,v

are linear functions of the z coordinate and

neglecting the rotatory inertia terms, after

integrating with respect to z, we have the

following expression:

where ρ is density of the laminated plate, h

is thickness of the rectangular plate, and

u0,v0 are the displacement components of

the mid-plane. Conventionally, we consider

the vibration under the following

displacement forms:

where ω is a natural frequency of vibration.

By putting equation (9) into equation (8),

the kinetic energy can be rewritten as:

2.2 Energy principle

The energy principle for the Ritz

procedure can be stated as [7]:

where Π is Lagrangian functional, U is the

bending strain energy, V is the potential



energy of inplane loads, and T is the kinetic

energy of the laminated plate. By

considering bending and linear inertia of

the plate, equation (11) becomes:

where a and b are dimensions of the

rectangular plate, 

are the flexural stiffnesses and are

the bending-twisting coupling stiffnesses of

the laminate, Px and Py are applied biaxial

loads in x- and y- directions respectively.

2.3 Reduced flexural stiffness

When the arbitrary shape of cut off

region is occurred in the rectangular plate,

the overall effective flexural stiffness

would be smaller than the flexural stiffness

of perfect plate. We would like to partition

the arbitrary shape of cut off region into

sufficient numbers of rectangular shape of

subregions and right triangular shape of

subregions to get the approximate solution.

A double Fourier series form of reduced

flexural stiffnesses had been

used in the delaminated plate study by

Wang et al [5]. With {D}  representing

original stiffnesses and

and the distribution function of

reduced flexural stiffnesses is written in the

following form:

where are the Fourier

coefficients, they are written in the

following forms for the arbitrary shape of

approximately cut off region that is shown

in Figure 2:



where is the

area of the cut off rectangular sub-

region of dimensions with

its center at as shown in Figure

2, KL is the total number of cut off

rectangular subregions, A=ab , is the

ratio of the amount of flexural stiffnesses,

same for all components, for the kl cut off

sub-region to the corresponding stiffnesses

of the no cut of laminate,ζ 0 =c 0 =0 ,ζ 2 =a,

c 2 =0, η 2 =b,d 2=0, K is the total number of

cut off rectangular sub-regions in the x-

direction. At each , there are L k cut off

rectangular subregions, L is the total

number of cut off rectangular sub-regions

in the y-direction. At each η (l) , there are K

l cut off rectangular subregions. is the

area of the cut off right triangular

subregion of dimensions

with at the middle point of

sidelong edge, TKL is the total number of

cut off right triangular subregions,  TK is

the total number of cut off right triangular

sub-regions in the x-direction. At each 

, there are TLk cut off right triangular

subregions, TL is the total number of cut

off right triangular subregions in the y-

direction. At each η (l), there are TK l cut off

right triangular subregions. For the closely

representing f(x, y) to actual stiffness, a

sufficient number of terms of a ij would be

used. Of course, only a 00 =1 exists if there

is no cut off region.

2.4 The Ritz method

The Ritz method provides a

convenient method for obtaining

approximate solutions for buckling and/or

vibration problems. For the present

problem of four sides simply supported,

and four sides clamped rectangular

anisotropic plates with arbitrary shape of

cut off region, the solution is assumed in

the following form:



and for the reduced flexural stiffnesses

in cut off plate, with the

process of minimization equation [7]:

Substituting equation (15) in conjunction

with equation (13) into equation (16), we

arrive at:

in which f (x,y) represents the distribution

function of bending stiffness and bending-

twisting coupling stiffness of the plate.

Although f (x,y) could be different for

different stiffness components, it is taken to

be uniform for all in the present study.

After integrating equation (17) with

properly assumed X m (x) and Y n (y), we

have the following system of equations.

in which contains 

with specified as parameters. By

requiring the determinant of the coefficient

matrix in equation (18) to vanish, we have

the eigenvalue problem for the critical

under a given 

2.5 Simply-supported rectangular plate

We now consider the simply

supported rectangular laminated plate

compressed by uniform inplane loads of 

with specified The boundary

conditions for a four edges simply-

supported rectangular plate are written as

follows:

and the following characteristic functions



for are selected.

By substituting the equation (13) and (21)

into equation (17), and performing

integrations afterwards, we can obtain the

equations in series forms.

2.6 Clamped rectangular plate

We consider a four sides clamped

rectangular laminated plate compressed by

uniform inplane loads of with specified

The boundary conditions are:

and the following characteristic functions

for are selected.

By substituting the equation (13) and (24)

into equation (17), and performing

integrations afterwards, we also can obtain

the equations in series form.

3. Some numerical results and
discussions

We assumed that there were no local

buckling occurred in the anisotropic

laminates under the whole processes of

axial compression in the numerical

simulations. The stiffness of a remaining

middle-plane symmetrical cut off region is

determined by the flexural stiffness

between every two adjacent cut off region,

through the thickness of the plate. For

example, if there is a middle-plane

symmetrical single cut off region through

the thickness as shown in Figure 3, we have

Firstly, we study the

convergence of pure global buckling

solution for a simply supported plate with

arbitrary shape of typical cut off region as

shown in Figure 1 with the coordinates

and 

is shown in Figure 4a. And convergence of

pure global buckling solution for a clamped



plate with the same coordinates of arbitrary

shape of typical cut off region is shown in

Figure 4b. We find the total number of

terms resulting in a M=N=5 of [A] matrix is

established explicitly and used to

demonstrate the calculating procedure. The

typical stiffness for the perfect part is taken

to be 

for all numerical

computations. Secondly, we study the

following cut off region cases:

3.1 Typical cut off region case

3.1.1 Simply supported plate

A plate with arbitrary shape of typical

cut off region (see Figure 1) with the

coordinates under biaxial loading condition

with is considered. The

following buckling load parameter is

introduced: The result

for the critical load of a plate without cut

off region by using the Ritz method is

found to be 3.0396, which should be the

maximum upper bound for all other

numerical results presented in this paper.

A square plate has arbitrary shape of

typical cut off region with y-coordinates

cut

off region position is occurred at =0.3.

Results on the pure global buckling load

normalized with respect to =3.0396

versus c1/b (c1=0.1b with x1=0.4b, x2=0.5b,

x3=0.6b; c1=0.2b with x1=0.3b, x2=0.5b,

x3=0.7b; c1=0.3b with x1=0.1b, x2=0.5b,

x3=0.9b) are shown in Figure 5. The result

show that normalized pure global buckling

load ratio decreases as the cut off

region size increases.

A square plate has arbitrary shape of

typical cut off region with the coordinates

Results on the pure global

buckling load normalized with respect to

versus are shown in

Figure 6. The results show that normalized

pure global buckling load ratio 

firstly decreases then keeps almost constant

as the cut off region position 

increases.

In the case of vibration, we define the



non-dimensional frequency 

. A plate without cut off region, the

fundamental frequency for  is found to be

2.42204. A square plate has arbitrary shape

of typical cut off region with the

coordinates 

cut off

region position is occurred at = 0.3.

Results on the non-dimensional

fundamental frequency k versus are

shown in Figure 7. The result shows that

the  decreases as the increases.

3.1.2 Clamped plate

For a clamped rectangular plate

without cut off region, the critical buckling

load is , this value should be the

maximum upper bound for all other

numerical results presented for a clamped

plate. A square plate has arbitrary shape of

typical cut off region with y-coordinates

y1=0.2b, y2=0.4b, y1=0.6b, y2=0.8b, (fixed

d1=0.3b and ζ1=η1=0.5b, ), cut off region

position is occurred at = 0.3. Results

on the critical load normalized with respect

to versus c1/b ( c1=0.1b, with

x1=0.4b, x2=0.5b, x3=0.6b; c1=0.2b with

x1=0.3b, x2=0.5b, x3=0.7b; c1=0.3b with

x1=0.2b, x2=0.5b, x3=0.8b; c1=0.4b with

x1=0.1b, x2=0.5b, x3=0.9b) are shown in

Figure 8. The result show that normalized

pure global buckling load ratio 

decreases as the cut off region size c1/b

increases.

A square plate has arbitrary shape of

typical cut off region with the coordinates

x1(0.2b, 0.2b), x2(0.6b, 0.2b), x3(0.6b, 0.8b),

x4(0.4b, 0.6b), x5(0.2b, 0.4b) i.e. c1=0.2b,

d1=0.3b,  ζ1=0.4b, η1=0.5b, Results on the

pure global buckling load normalized with

respect to versus are

shown in Figure 9. The result show that

normalized pure global buckling load ratio

firstly decreases and then keeps

almost constant as the cut off region

position increases.

A plate without cut off region, the

fundamental frequency for k is found to be

3.20406. A square plate having arbitrary

shape of typical cut off region with the



coordinates x1(0.2b, 0.2b), x2(0.6b, 0.2b),

x3(0.6b, 0.8b), x4(0.4b, 0.6b), x5(0.2b, 0.4b)

i.e. c1=0.2b, d1=0.3b, ζ1=0.4b, η1=0.5b, cut

off region position is occurred at  =

0.3. Results on the non-dimensional

fundamental frequency k versus are

shown in Figure 10. The results show that

the k decreases as the increases.

3.2 Circular cut off region case

For a square plate has a circular cut

off region centered at and

cut off region radius r=0.3b that is shown

in Figure 11. We partition the circular cut

off region into rectangular shape of twelve

sub-regions and right triangular shape of

twelve sub-regions with coordinates X1(x1,

y1) to X12(x12, y12) corresponding to x- and

y-coordinates 

where and n is integer, that is

shown in Figure 12. Some numerical

results are presented for four sides simply-

supported plate as well as clamped plate

under the global buckling and vibration.

3.2.1 Simply supported plate

Results on the pure global buckling

load normalized with respect to 

versus were shown in Figure 13. The

result show that normalized pure global

buckling load ratio decreases as the

cut off region position increases.

Results on the non-dimensional

fundamental frequency k versus  were

shown in Figure 14. The results show that

the  decreases as the increases.

3.2.2 Clamped plate

Result on the pure global buckling

load normalized with respect to 

versus was shown in Figure 15. The

result show that normalized pure global

buckling load ratio decreases as the

cut off region position increases.

Result on the non-dimensional fundamental

frequency k versus was shown in

Figure 16. The results show that the k

decreases as the increases.

3.3 Elliptical cut off region case

For a square plate has an elliptic cut

off region centered at and

cut off region length aspect ratio

as shown in Figure 17.



Similarly, we partition the elliptic cut off

region into rectangular shape of twelve

sub-regions and right triangular shape of

twelve sub-regions with coordinates

to corresponding to

x- and y- coordinates , 

where and n is

integer. Some numerical results are

presented for four sides simply supported

plate as well as clamped plate under the

pure global buckling and vibration.

3.3.1 Simply supported plate

Results on the pure global buckling

load normalized with respect to =3.0396

versus  for for R=0.5~1.0 was shown

in Figure 18. The result show that

normalized pure global buckling load ratio

decreases as the cut off region

position increases. The non-

dimensional fundamental frequency k

versus was shown

in Figure 19. The result show that the k

decreases as the increases.

3.3.2 Clamped plate

Results on the pure global buckling

load normalized with respect to =6.9477

versus for R=0.5~1.0  was shown in

Figure 20. The result show that normalized

pure global buckling load ratio 

decreases as the cut off region position

increases. The non-dimensional

fundamental frequency k versus for

for R=0.5~1.0 was shown in Figure 21. The

result show that the k decreases as the

increases.

4. Conclusions
The pure global buckling and

vibration predictions due to reduced

flexural stiffness effect for four sides

simply supported as well as clamped

anisotropic laminates having arbitrary

shape of cut off region have been studied

by treating the cut off region with reduced

stiffness. The stiffness variation of the plate

is represented by Fourier series. The

numerical results are obtained by the Ritz

method of energy approach for plates

having typical arbitrary shape of cut off

region and utilizing the partition technique



under biaxial compression loads. We find

that the normalized pure global buckling

load ratio decreases as the cut off

region size increases. The non-dimensional

fundamental frequency k decreases as the

increases.
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