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Numerical Solution of Buckling and Vibration
in Laminates with Arbitrary Shape Cut Off
Regions

C.C.Hong, H. W. Liao, M. F. Hwang, K. C. Jane

Abstract

The pure global buckling and vibration of four sides simply-supported as well as
clamped anisotropic laminates having an arbitrary shape cut off region that is symmetric with
respect to mid-plane have been studied by treating the remaining cut off regions as uniform
plates with reduced stiffness. The variation of stiffness of the plate is represented by Fourier
series. Computational solutions of the energy principle for the Ritz method in a plate having
arbitrary shape of typical cut off regions under biaxial compressive loads are obtained. Some
numerical results for the pure global buckling load prediction due to its reduced flexural
stiffness for the circular cut off regions and elliptical cut off regions are presented. We find
the normalized pure global buckling load ratio decreases as the cut off regions size increases,
and the nondimensional fundamental frequency value decreases as the cut off regions size

increases.
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1. Introduction

Many researchers have studied
various aspects of buckling load and free
vibration of plates with and without the
delaminations analytically and
experimentally [1-5]. There are three
possible buckling mode types: (a) local
buckling mode, (b) global buckling mode
and (c) coupled global and local buckling
modes that have been examined. Cut off
regions on the top and bottom surfaces of
laminated plate may be necessary for fitting
something on it. Cut off regions may
reduce bending stiffness of laminates,
which lower the compressive load carrying
capacity and natural frequencies. In 2000,
Jane and Hong [6] made a study about the
pure global buckling and vibration of
rectangular laminates with rectangular cut
off regions. An energy approach for the
Ritz procedure was discussed by Whitney
[7] is used to determine the pure global
buckling load and vibration of four edges
simply-supported as well as clamped
anisotropic rectangular laminates that

having arbitrary shape cut off regions.

The stiffness variation of the plate is
represented by Fourier series [5] and the
partition technique [8] can be utilized to
approach the arbitrary shape of cut off
regions into the rectangular subregions and
right triangular subregions. The Ritz
method using the reduced flexural
stiffnesses to represent the stiffness of the
arbitrary shape of cut off regions under
biaxial compression loads would be
studied. The purpose of this study is to
investigate the effect of arbitrary shape cut
off regions to the pure global buckling and
vibration of rectangular plates by energy
method. The typical anisotropic rectangular
laminates with middle-plane symmetric
arbitrary shape cut off region that is shown
in Figure 1. With coordinates X;(x;,y;),
Xo(x3.y1)s X3(x3,54), Xy(x2,y3) and X5(x;,y,)
and is used to demonstrate the study
procedures. We partition the arbitrary shape
of cut off region into the rectangular
subregions and right triangular subregions
as shown in Figure 2. Where ) is the x-
coordinate at middle point of 2¢, ,2¢y, ,

which is the x-directional length of cut off
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sub-region and 7, is the y- coordinate at
middle point of 2d,, ,2d,,,, which is the y-
directional length of cut off sub-region.
2. Formulation
2.1 Governing equation

The strain energy of an elastic plate in
terms of Cartesian coordinates X, y system

is written in the following relationship [7]:

|
L.' = ;J-ir.r £+ & +o_ & ki {1}

where o, and 0, are the normal stresses, o,
is the shear stress, ¢, and ¢, are the normal
strains, and ¢,, is the shear strain. This
strain energy generally contains two parts
of energy, there are strain energy due to
stretching and strain energy due to bending.
By substituting the plane stress constitutive
equations and the strain-displacements
relations into relationship equation (1), we
find that the strain energy for pure
transverse bending of anisotropic laminated
plate can be written in the following

equation:

where W is the transverse displacement,
[, are the flexural stiffnesses.

The potential energy of external
inplane loads due to a transverse deflection

is given as follows:

e N gt dody l-'l'.

o= [fiviel e s

where N,. N, and N are initial
external inplane force resultants applied to
the rectangular plane in a prebuckled state,
£, -'.",' and £ are the midplane strains
due to the transverse deflection. We
consider the initial axial loads acting on the
plane in the x- and y- directions, these

external loads are represented as:

N'aP N uP N ai i4)

For considering the large transverse
deflection in the buckled state, we have

nonlinear terms in the strains involving




BEARVRIIREL . BEROLE RIRSPDEEER  HTH - BEE S0 - B@E 169

transverse displacement W as follows:

¥, -.l:i-l'_.:l-!. ':E:I
- X = i} X ik
By substituting equations (4) and (5)

into equation (3), we arrive at the following

potential energy equation:
1 A W
s " . P Frily {3
(e = )

The kinetic energy of an elastic plane
in terms of a Cartesian coordinate X, y, z
system is written in the following

relationship:
T = : Fﬁn' |-|r]r| |:r1 ¥ =|‘1:I ¥ kel (7]
. il il el 2

where g, is the density of the k-th layer in
laminated plate, u,v and W are the
displacement components in the x, y and z
directions respectively, ¢ is the time. For
considering the tangential displacement u,v
are linear functions of the z coordinate and
neglecting the rotatory inertia terms, after
integrating with respect to z, we have the

following expression:

| | A i W -

o ¥ & [ = & ol I.'h'
T =5 )P 0 (= ey
where p is density of the laminated plate, &
is thickness of the rectangular plate, and
u’,v’ are the displacement components of
the mid-plane. Conventionally, we consider

the vibration under the following

displacement forms:

u =u"e™ L ¥ =™ .H'. W x, v ™ (W)

where w is a natural frequency of vibration.
By putting equation (9) into equation (8),

the kinetic energy can be rewritten as:
T = _I|J‘J‘||';H:l (' = v+ W by {100y
2.2 Energy principle

The energy principle for the Ritz

procedure can be stated as [7]:
[ W] fo | =T =stationary value  (11)

where IT is Lagrangian functional, U is the

bending strain energy, V is the potential
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energy of inplane loads, and T is the kinetic
energy of the laminated plate. By
considering bending and linear inertia of

the plate, equation (11) becomes:

1 nl | L. o'
sl & 2
I =3 [ [1Bui= -

.8 Fa
Fal || il |
b fhaf—0—) + Aha[ ——]" 4
5 XN
PR P T
(=1 [E 1 (8 XY
| O H q
Ri ¥ + BN —phad (4" + W7 by (12)
r il

where a and b are dimensions of the
rectangular plate, Dy, Dis, Do and D
are the flexural stiffnesses and 3, s are
the bending-twisting coupling stiffnesses of
the laminate, P, and P, are applied biaxial
loads in x- and y- directions respectively.
2.3 Reduced flexural stiffness

When the arbitrary shape of cut off
region is occurred in the rectangular plate,
the overall effective flexural stiffness
would be smaller than the flexural stiffness
of perfect plate. We would like to partition
the arbitrary shape of cut off region into
sufficient numbers of rectangular shape of
subregions and right triangular shape of

subregions to get the approximate solution.

A double Fourier series form of reduced
flexural stiffnesses E: = fix, i had been
used in the delaminated plate study by
Wang et al [5]. With {D} representing
original stiffnesses & .. . & .1 & and
i1, and the distribution function of

reduced flexural stiffnesses is written in the

following form:

fix, v

i -E‘J_-:.ﬂ.:'. ﬂ-E.{ coyly JE.-l -,'\-:lﬂll,':lﬁ_ﬂ I 1"

where @, .d,,.a, and a,  are the Fourier
coefficients, they are written in the
following forms for the arbitrary shape of

approximately cut off region that is shown

in Figure 2:

a_ =l I{Er.ul RIJ-.'{.:E.I.-I,-:I-H_I

a. ‘E[ OO e Tl +

:i"' i :En’_ {l = &, ijoose vy

Wi - B, Weonr mds

5

5 1 "
e .I,EJ oo el 4
~ | i i
;E_[ =5 _I‘S_.r__n R, Mo vy

I:I_ |--'-.':_| d Hl=R (peos B il
_|.}-J’ I.r}'.'u' A I
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T .-IL J.Ej comar roos i1 voledy
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R % et D

g 2L B 3 g U B =i

il = K, i casaaroos i, yelva] i 14)
where @ =ixia, f = jxib, A, is the

area of the &/ cut off rectangular sub-
region of 2c,, by 2d , dimensions with
its center at [<,,. 1,1 as shown in Figure
2, KL is the total number of cut off
rectangular subregions, A=ab , R, is the
ratio of the amount of flexural stiffnesses,
same for all components, for the &/ cut off
sub-region to the corresponding stiffnesses
of the no cut of laminate,C ,=c ;=0 ,C , =a,
¢ ,=0, n,=b,d ,=0, K is the total number of
cut off rectangular sub-regions in the x-
direction. At eachs,;,, there are L , cut off
rectangular subregions, L is the total
number of cut off rectangular sub-regions
in the y-direction. At each 7 (;, there are K
; cut off rectangular subregions. ¥4, is the
area of the &I cut off right triangular
subregion of I¢,, by &, dimensions

with {£,,-%,) at the middle point of

sidelong edge, TKL is the total number of
cut off right triangular subregions, 7K is
the total number of cut off right triangular
sub-regions in the x-direction. At each &3,
, there are TL; cut off right triangular
subregions, 7L is the total number of cut
off right triangular subregions in the y-
direction. At each 1 ), there are TK , cut off
right triangular subregions. For the closely
representing f(x, y) to actual stiffness, a
sufficient number of terms of a ; would be
used. Of course, only a o, =/ exists if there
is no cut off region.
2.4 The Ritz method

The Ritz method provides a
convenient method for obtaining
approximate solutions for buckling and/or
vibration problems. For the present
problem of four sides simply supported,
and four sides clamped rectangular
anisotropic plates with arbitrary shape of

cut off region, the solution is assumed in

the following form:

L1

W iz W_X_(x)¥ () (15)
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and for the reduced flexural stiffnesses
IDf=[Difir.y) in cut off plate, with the

process of minimization equation [7]:
2L g s (16)

Substituting equation (15) in conjunction
with equation (13) into equation (16), we

arrive at:

')
" : aa!_ ¥ ¥ vy +

EE II.’J Fix v

£X &Y ¥ Y
e i ol k& X E ¥ B o o
“ i e Ve Ml

1Y o

_[[u fix pHX X —L— ?-L.mh
uD ﬂ_f_f‘.-__i_“_ feck +
II.I'_.'I.III k& & hﬁh e

“-_” s ]u' X u”L il -:1'1.:1'1’ }hr.l'u

:I'1 r.l"l: a r

L d¥ oY Iy 'Y o
II_!J fw vy '—'-_.‘__. 3 'f':-.‘_:.'__-_
oy oy iy |.I:'.' iy
oy r{i =dy j': ¥ dy +
rFlxrx .ivI LA
I at ||rl' :iL‘ “
,.#nr_,[.‘.‘ .'l',.h-I}' FavitV_ =1, -:_-'. el |

in which f (x,y) represents the distribution
function of bending stiffness and bending-
twisting coupling stiffness of the plate.

Although f (x,y) could be different for

different stiffness components, it is taken to
be uniform for all in the present study.
After integrating equation (17) with
(x) and Y, (y), we

properly assumed X ,,

have the following system of equations.

[4]... bw}=0 (18)

in which [.-!]"_1 contains P andior m_
with specified I/, as parameters. By
requiring the determinant of the coefficient
matrix in equation (18) to vanish, we have
the eigenvalue problem for the critical
P, or e_,or &_ under a given .
2.5 Simply-supported rectangular plate
We now consider the simply
supported rectangular laminated plate
compressed by uniform inplane loads of
with specified £, /F.. The boundary
conditions for a four edges simply-

supported rectangular plate are written as

follows:

W="Wite =0 at x=la (19)
Wad'With =0 st y=0b (20)

and the following characteristic functions
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for X_{x) and ¥ (y) are selected.

[ foun

X (xi=sme_x=sin
i

Fayh=smf y=sm fj::}- (21)

By substituting the equation (13) and (21)
into equation (17), and performing
integrations afterwards, we can obtain the
equations in series forms.
2.6 Clamped rectangular plate

We consider a four sides clamped
rectangular laminated plate compressed by
uniform inplane loads of  with specified

F. [ F.. The boundary conditions are:

WedlW/dr=0 al x=0a (22}
W=cW/cy=0 at y=05 (23]

and the following characteristic functions

for X_{x) and ¥ (y) are selected.

B
X, (%)=1-cos2a x=1-cos ="

ol
j 3 2oy -
Y)=l-cos2fy=1- oo (24)

By substituting the equation (13) and (24)
into equation (17), and performing

integrations afterwards, we also can obtain

the equations in series form.

3. Some numerical results and
discussions

We assumed that there were no local
buckling occurred in the anisotropic
laminates under the whole processes of
axial compression in the numerical
simulations. The stiffness of a remaining
middle-plane symmetrical cut off region is
determined by the flexural stiffness
between every two adjacent cut off region,
through the thickness of the plate. For
example, if there is a middle-plane
symmetrical single cut off region through
the thickness as shown in Figure 3, we have
R, ={- 'f:T — i_:;_]‘ Firstly, we study the
convergence of pure global buckling
solution for a simply supported plate with

arbitrary shape of typical cut off region as

shown in Figure 1 with the coordinates

X (0. 2h0.26), LT el 1 X ((L8k0.85) .
K0S X 020040 , e,
c=cd =03, E=m =05 and &6 = 0.3

is shown in Figure 4a. And convergence of

pure global buckling solution for a clamped




174

BF2w EHN\H REBALT=F=R

plate with the same coordinates of arbitrary
shape of typical cut off region is shown in
Figure 4b. We find the total number of
terms resulting in a M=N=5 of [A] matrix is
established explicitly and used to
demonstrate the calculating procedure. The
typical stiffness for the perfect part is taken
to be I Lo =0, 0 +20 =2380
0w ebéa%0_ for  all  numerical
computations. Secondly, we study the
following cut off region cases:
3.1 Typical cut off region case
3.1.1 Simply supported plate

A plate with arbitrary shape of typical
cut off region (see Figure 1) with the
coordinates under biaxial loading condition
with /=8 =r 1is considered. The
following buckling load parameter is
introduced: i =iF b 14,5 1. The result
for the critical load of a plate without cut
off region by using the Ritz method is
found to be 3.0396, which should be the
maximum upper bound for all other
numerical results presented in this paper.

A square plate has arbitrary shape of

typical cut off region with y-coordinates

v, = 0.28, ¥, = O4b, ¥, = 0.68, ¥, = 0.8

ifixed & =038 and &, = i, = L56), cut
off region position is occurred at fr, /f1=0.3.
Results on the pure global buckling load
normalized with respect to . =3.0396
versus c¢,/b (¢,=0.1b with x,=0.4b, x,=0.5b,
x3=0.6b; ¢,=0.2b with x,=0.3b, x,=0.5b,
x3=0.7b; ¢,=0.3b with x,=0.1b, x,=0.5b,
x;=0.9b) are shown in Figure 5. The result
show that normalized pure global buckling
load ratio  /#_ decreases as the cut off
region size J* /I increases.

A square plate has arbitrary shape of
typical cut off region with the coordinates
X(0.260.20), X (085020 , X (0.850.88),
X056 0068, X 026046 je, ©=d =03,
£ = =15k, Results on the pure global
buckling load normalized with respect to
f* = 30i  versus /i are shown in
Figure 6. The results show that normalized
pure global buckling load ratio # /
firstly decreases then keeps almost constant
as the cut off region position /i
increases.

In the case of vibration, we define the
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non-dimensional frequency #=#'wi='J&r, [0
. A plate without cut off region, the
fundamental frequency for is found to be
2.42204. A square plate has arbitrary shape
of typical cut off region with the
coordinates X (02E0.2&), X (06O 2R
A0, X, (085 0060), X (026040 e
¢, =02bd =036 , & =04b5q, =058, cut off
region position is occurred at /i, /ir= 0.3.
Results on the non-dimensional
fundamental frequency k versus F/I*_ are
shown in Figure 7. The result shows that
the decreases as the ¥/ increases.
3.1.2 Clamped plate

For a clamped rectangular plate
without cut off region, the critical buckling
load is # =64477 | this value should be the
maximum upper bound for all other
numerical results presented for a clamped
plate. A square plate has arbitrary shape of
typical cut off region with y-coordinates
v,=0.2b, y,=0.4b, y,=0.6b, y,=0.8b, (fixed
d,=0.3b and &,=1,=0.5b, ), cut off region

position is occurred at 1, /fi= 0.3. Results

on the critical load normalized with respect

to . =677 versus ¢;/b ( ¢,=0.1b, with
x,=0.4b, x,=0.5b, x3=0.6b; ¢,=0.2b with
x,=0.3b, x,=0.5b, x,=0.7b; ¢,=0.3b with
x1=0.2b, x,=0.5b, x5=0.8b; ¢,=0.4b with
x,=0.1b, x,=0.5b, x3;=0.9bH) are shown in
Figure 8. The result show that normalized
pure global buckling load ratio i/
decreases as the cut off region size c¢,/b
increases.

A square plate has arbitrary shape of
typical cut off region with the coordinates
x1(0.2b, 0.2b), x,(0.6b, 0.2b), x5(0.6b, 0.8D),
x4(0.4b, 0.6b), x5(0.2b, 0.4b) i.e. ¢,=0.2b,
d,=0.3b, €,=0.4b, 11,=0.5b, Results on the
pure global buckling load normalized with
respect to # =69477 versus /i are
shown in Figure 9. The result show that
normalized pure global buckling load ratio
i (" firstly decreases and then keeps
almost constant as the cut off region
position f, /i1 increases.

A plate without cut off region, the
fundamental frequency for & is found to be
3.20406. A square plate having arbitrary

shape of typical cut off region with the
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coordinates x;(0.2b, 0.2b), x,(0.6b, 0.2b),
x3(0.6b, 0.8D), x,(0.4b, 0.6b), x5(0.2b, 0.4D)
i.e. ¢,=0.2b, d,=0.3b, T,=0.4b, 1,=0.5b, cut
off region position is occurred at ff /fi=
0.3. Results on the non-dimensional
fundamental frequency k versus /" are
shown in Figure 10. The results show that
the k decreases as the #/{* increases.
3.2 Circular cut off region case

For a square plate has a circular cut
off region centered at &£ = i, ={L% and
cut off region radius r=0.3b that is shown
in Figure 11. We partition the circular cut
off region into rectangular shape of twelve
sub-regions and right triangular shape of
twelve sub-regions with coordinates X;(x;,,
1) to Xp»(xy5, y1) corresponding to x- and
y-coordinates x=4£, +rcostl, w=m, +rsind,
where #=unz/6 and n is integer, that is
shown in Figure 12. Some numerical
results are presented for four sides simply-
supported plate as well as clamped plate
under the global buckling and vibration.
3.2.1 Simply supported plate

Results on the pure global buckling

load normalized with respect to . = 6.4477
versus 1, /fr were shown in Figure 13. The
result show that normalized pure global
buckling load ratio j* /i" decreases as the
cut off region position /i increases.
Results on the non-dimensional
fundamental frequency k versus were
shown in Figure 14. The results show that
the decreases as the #/*" increases.
3.2.2 Clamped plate

Result on the pure global buckling
load normalized with respect to #. =477
versus /i was shown in Figure 15. The
result show that normalized pure global
buckling load ratio ¥ /. decreases as the
cut off region position /i1 increases.
Result on the non-dimensional fundamental
frequency k versus F/#*. was shown in
Figure 16. The results show that the k
decreases as the f/f* increases.
3.3 Elliptical cut off region case

For a square plate has an elliptic cut
off region centered at £, = 1, =034 and
cut off region length ¢, = (L3, aspect ratio

R=d/c,, as shown in Figure 17.
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Similarly, we partition the elliptic cut off
region into rectangular shape of twelve
sub-regions and right triangular shape of
twelve sub-regions with coordinates
Vix.¥h to X.lx..v.) corresponding to
x- and y- coordinates , ®=d, 4 cosi,
waup, b sinét where #=mrié and n is
integer. Some numerical results are
presented for four sides simply supported
plate as well as clamped plate under the
pure global buckling and vibration.
3.3.1 Simply supported plate

Results on the pure global buckling
load normalized with respect to . =3.0396
versus for M, /it for R=0.5~1.0 was shown
in Figure 18. The result show that
normalized pure global buckling load ratio
I [ decreases as the cut off region
position /1 /fi increases. The non-
dimensional fundamental frequency k
versus ##  for K=05-140 was shown
in Figure 19. The result show that the &
decreases as the f/{* increases.

3.3.2 Clamped plate

Results on the pure global buckling

load normalized with respect to ' =6.9477
versus 1,/ for R=0.5~1.0 was shown in
Figure 20. The result show that normalized
pure global buckling load ratio F /F

decreases as the cut off region position
I, /i1 increases. The non-dimensional
fundamental frequency k versus #/#* for
for R=0.5~1.0 was shown in Figure 21. The
result show that the k decreases as the

P increases.

4. Conclusions

The pure global buckling and
vibration predictions due to reduced
flexural stiffness effect for four sides
simply supported as well as clamped
anisotropic laminates having arbitrary
shape of cut off region have been studied
by treating the cut off region with reduced
stiffness. The stiffness variation of the plate
is represented by Fourier series. The
numerical results are obtained by the Ritz
method of energy approach for plates
having typical arbitrary shape of cut off

region and utilizing the partition technique
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under biaxial compression loads. We find
that the normalized pure global buckling
load ratio # /. decreases as the cut off
region size increases. The non-dimensional
fundamental frequency k decreases as the

P increases.
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Figure 1 Geometry of a typical laminated plate with arbitrary shape of cut off region
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Figure 2 The sub-regions of approximately arbitrary shape cut off region
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Figure 4a Simply supported plate with arbitrary shape of typical cut off region
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Figure 4b For a clamped plate with arbitrary shape of typical cut off region
Figure 4 Convergence of pure global buckling solution
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Figure 5 The pure global buckling load v=. cut ofl region size
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Figure & The pure global buckling load vs. cut off region position
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Figure 7 The fundamental frequency vs. axial load
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Figure 8 The pure global buckling load vs. cut off region size for a clamped plate
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Figure @ Pure global buckling load vs, cut off region position for a clamped plate
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Figure 10 The fundamental frequency vs. axial load for a clamped plate
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Figure 11 Geomeiry of a plate with circular cut off region
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Figure 12 The sub-regions of approximately cut off region
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Figure 13 Pure global buckling load vs. circular cut off region position in
simply-supported plate
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Figure 14 Fundamental frequency vs. axial load for a circular cut off region in
simply supponed plate
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Figure 15 The pure global buckling load vs. circular cut off region position for a

clamped plate
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Figure 16 The fundamental frequency vs. axial load for a circular cut off region in
clamped plate
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Figure 17 Geometry of a plate with elliptical cut off region
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Figure 18 Pure global buckling load vs. elliptical cut off region position in
simply supporied plaie
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Figure 19 The fundamental frequency vs. axial load for elliptical cut off region
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Figure 19 The fundamental frequency vs. axial load for elliptical cu off region
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Figure 21 The fundamental frequency vs. axial load for elliptical cut off region

for a clamped plate
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