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Chaos Synchronization of Mutual Coupled Gyros

Hsien-Keng Chen, Jia-Hroung Wu, Tsung-Nan Lin

Abstract

Synchronization of the two identical chaotic motions of symmetric gyros has been
studied. It has shown that one can make two identical chaotic systems to synchronize through
applying dual-way coupling. The sign of the sub-Lyapunov exponents is also applied as a
criterion for this. It has been found that when the last time of the major sub-Lyapunov
exponent transverses the zero then chaos synchronization occurs. In addition,
synchronization of chaos has been also shown by phase trajectory. Besides, the

synchronization time is also examined.
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1. Introduction

The symmetric gyro can be used to
modal a variety of physical systems,
ranging from a child's top to a modern
gyroscopic navigational instrument. In
1996, Ge and his coworkers [1, 2]
conducted a detailed study evaluating the
nonlinear behavior of a symmetric heavy
gyroscope mounted on a vibrating base. In
their study, the chaotic motion of the
system with linear damping was
investigated. Very recently the motion of a
symmetric gyro which is subjected to a
harmonic vertical base excitation has been
studied by Tong et al. [3], with particular
emphasis on its nonlinear dynamic
behavior without taking into account the
damping effect. Their study has shown that
a symmetric gyro exactly exhibited chaotic
motion.

The possibility of two or more
chaotic systems oscillating in a coherent
and synchronized way is not an obvious
one. One of the main features often
associated with the definition of chaotic

behavior is the sensitive dependent on

initial conditions. Then one may conclude
that synchronization is not feasible in
chaotic systems because it is not possible in
real systems either to reproduce exactly
identical initial conditions or exact
specification of system parameters for two
similar systems. But, the recent suggestion
of Pecora et al. [4] that it is possible to
synchronize even chaotic systems by
introducing appropriate coupling between
them has revolutionized our understanding.
They have shown that if a response (slave)
system responses to a chaotic signal from
the drive system, under some conditions the
signal in the response would converge to
the corresponding signals in the drive
(master) system. Such a possibility is
known as synchronization of chaotic
systems. Synchronization can be thought of
as a form of control chaos. Since their
work, Synchronization of chaotic
dynamical systems has been intensively
studied [5]. Very recently, Chen and Lin [6]
have shown that two identical chaotic
symmetric gyros can synchronize through

applying one-way coupling. In this paper, it
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will be studied that if two identical chaotic
symmetric gyros can synchronize through
applying dual-way coupling or not. The
sign of the sub-Lyapunov exponent will be
applied to diagnose synchronization of
chaos occurs or not. Synchronization of
chaos will be also shown by phase
trajectory. Further, the synchronization time

will be also examined.

2. Equations of Motion

The geometry of the problem under
consideration is depicted in Fig. 1. The
motion of a symmetric gyro mounted on a
vibrating base can be described by Euler's
angles ( (nutation), ( (precession), and (
(spin). By Lagrangian approach that the

Lagrangian has the expression

2

. ,2 . .
L= %11 (0 +¢ sin’0) +%I3(<1)cos9+\y)2

—Mg(/ + Isinot)cosd
)
where I and I, are the polar and
equatorial moments of inertia of the
symmetric gyro, respectively, Mg is the

gravity force, is the amplitude of the

external excitation disturbance, and is the
frequency of the external excitation
disturbance. It is not difficult to see that
coordinates ¢ and V¥ are cyclic, the

momentum integrals are

Py :Z} Lsin® 0+1,(pcosd + 1) cosd =B,

2

P =87].“=I3(d)cose+\i/)=13032=3w )
oy

v

where @z is the spin velocity of the
gyro. The dissipation function is also given

by

1

F= EC(i)2 (4)

where C is a positive constant.
Applying Routh's procedure and the above
relation, the equation governing the gyro is

given by

2 _ 2 .

e (2007,
sin

Mg/ | / | ©)

g sind = sinmtsind

1 1

The normalized equations in

convenient first order form are
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X, =X,,
1_ 2
e
sin” X,
+PBsinx, +fsinmtsinx,
where
I
x, =0,x, =0,0= Py = 31002 ,
1 71 (7)
C Mg/ Mg/
Cl :—’B: ’f:
I1 Il I1

The detailed explanation for the
equations of motion the reader is referred to

reference [1, 2].

3. Chaos Synchronization by
Dual-Way Coupling

Chaos synchronization is an important
problem in the nonlinear science. Chaos
synchronization problem has the following
feature: The trajectories of a slave
(response) system must tracks the
trajectories of the master (drive) system in
spite of both master and slave system being
different. In this section, we will study that
if two identical chaotic symmetric gyros
can synchronize through applying dual-way
coupling or not. The state equations of two
identical gyros with dual-way coupling

element are represented as

drive(master):
X, =X,,
1- ’ ~
X, =—a w—cx2 +Bsinx;, (8)
sin” x,
+fsinotsinx, +eG(x,,y,)
response(slave):
Vi =Yas
| (1-cosy,)’ -
sin” y,

+fsinotsiny, +eF(x,,y,)

where ¢ is the coupling parameter,
F(x,, y,)= sin(x,-y,) and G(x,, y,)= € sin(y,-
x,) are the coupling functions. It is nature,
when the one-way coupling (as function G
is not presented) applying one knows that
the behavior of the slave system is
dependent on the behavior of the master
system, but the second one is not
influenced by the behavior of the first.
Clearly, the behaviors of the slave system
and master system are interacted owing to
dual-way coupling. In fact, synchronization
of chaos can be still regarded as a special
tracking problem, with the desired
trajectory not being a constant. In addition,
as the dual-way coupling is applied, it is

known that desired strange attractor could
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be changed. The dual-way coupling is also
a control law. The above coupling terms
possess the same character, when the
synchronization occurs (x (t)=y (1), i=1,2)
then them vanish.

The system exhibits chaotic
behavior under the parameter condition :
=100, =1, ¢=0.5, @= 2, f=34.5. Fig.
2-3 show phase trajectory and Poincaré
map for f=34.5. An interesting strange
attractor, which configuration looks like
"S", is presented. The detailed analysis and
discussion the reader is referred to
reference [1, 2].

In order to study synchronization of
chaos, the influence of the coupling
strength on the two identical systems
behavior will be examined by observing
how the coupling parameter & changes
with the constant values of the remaining
parameters (, (=1, ¢=0.5, = 2, f=34.5). The
initial conditions of master system and
slave system are also given as (1.0, 0.2) and
(0.1, 0.02), respectively. In the present
study, the equations (8) and (9) will be

integrated numerically against € ([0,1.0],

while the incremental value of € is 0.01 in
order to obtain the Lyapunov exponents.
For the whole system (equations (8) and
(9)), the Lyapunov exponents are presented
as (A 1,12,13,14,0). Where 1 3 and 14
are called sub-Lyapunov exponents. As
function G is not given, the master system
exhibits chaotic motion under the
parameter condition: a2=100, S=1,
c=0.5, @w= 2, f=34.5. In this situation, the
Lyapunov exponents A 1 and A 2 are
always presented as (A 1>0, A 2<0) for any
coupling strength & . When the dual-way
coupling introduced, the Lyapunov
exponents A 1 and A2 will be changed
depending on the coupling strength € . For
the whole system the Lyapunov exponent
types can be classified as: (I)(+°> — > +°
— > 0), hyperchaos, (II) (+°> — > — >
— » 0), chaos, and (III) (— > — > — >
— » 0), regular motion. The sub-Lyapunov
exponent types are presented as (+, -) and (-
, -). The Lyapunov exponents of the whole
system against € are shown in Fig. 4.

We know that the master system and

the slave system will synchronize only if
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the sub-Lyapunov exponents are all
negative. And the above theorem is a
necessary, but not sufficient condition for
synchronization. From above analysis, one
finds that only type (II) could perform
chaos synchronization.

Fig. 4 shows an interesting
phenomenon, the major sub-Lyapunov
exponent transverses zero many times in
certain interval of €. It is obvious that the
detailed discussion is needed. It is found
that the sub-Lyapunov exponents are all
negative at €€ [0.15, 0.19] and € 0.24.
While the Lyapunov exponent type is (— °
— > — > —>0)ateec[0.16, 0.18], the
master and slave system exhibit regular
motion. The master system and slave
system are calculated by numerical
integration against € =0.15, 019 € 0.24,
while the incremental value of €is 0.01.
The fascinating behavior of the slave
system occurs. The attractor of the slave
system is changed into another
configuration for € =0.15 and € =0.19,
obvious that

respectively. It is

synchronization will not present. Finally, if

€ 0.24, the phase portraits of master and
slave are synchronized. Fig. 5(a) depicts
the trajectory of (x2-y2), for € =0.30. Fig.
5(b) shows the relation of x2 and y2 as
synchronization occurs. Fig. 5(c) and (d)
display the trajectories of master system
and slave system, respectively. On the
contrary, if € =0.2, the two identical
systems will not synchronize as shown in
Fig. 6.

From the previous analysis, we can
conclude that the coupling strength &
plays a major role to make two identical
chaotic systems synchronizing. Besides, it
is found that when the last time of the
major sub-Lyapunov exponent transverses
the zero then chaos synchronization occurs.
4. Synchronization Time

In the previous study, the dual-way
coupling has been successfully applied to
perform chaos synchronization in the two
identical systems. Next, we address the
following question: when can one make a
chaotic trajectory of one system to
synchronize with a chaotic trajectory of the

other system with dual-way coupling. For
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this purpose, we definite an error function

E(t) :|X1 - Y1|+|X2 _Y2| +
|X1 _Y1|+|X2_Y2| (10)
When the value of function E(t) is less
than 10-6, then the two identical systems
synchronizing are archived. At that time t,
which is called "synchronization time".
According the above rigorous definition, if

€ =0.30 the synchronization time is 383.6

seconds.

5. Conclusions

Synchronization of the two identical
chaotic motions of symmetric gyros has
been studied. It has shown that one can
make two identical chaotic systems to
synchronize through applying dual-way
coupling. The sign of the sub-Lyapunov
exponent has been applied to diagnose
synchronization of chaos occurs or not. It
has been also found that when the last time
of the major sub-Lyapunov exponent
transverses the zero then chaos

synchronization occurs. In addition,

synchronization of chaos has been also

shown by phase trajectory. Besides, the

synchronization time is also examined.
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Fig. 1. A schematic diagram of the physical system
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Fig. 4
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Fig. 2-3 The Phase trajectory and the Poincaré map of the system for specific values set
(=100, p=1 ¢,=0.5, ¢,=0.05, ®=2, £=34.5).

Fig. 4 The Liapunov exponents of mutual coupled gyros versus ¢ .
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Fig. 5(a)
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Fig. 5(b)

5 (a)The trajectory of (x2-y2), (b) The relation of x; and y», (c) The trajectories of the

master system, (d) The trajectories of the slave system (Synchronized motion for

€ =0.3).
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Fig. 6(a) Fig. B(b)
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Fig. 6 (a) The trajectory of (x2-y»), (b) The relation of x, and y», (c) The trajectories of
the master system, (d) The trajectories of the slave system (Unsynchronized

motion for & =0.2).




