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互耦陀螺之渾沌同步

陳琜庚、吳家宏、林宗南

摘要

本篇論文研究兩相同互耦陀螺之渾沌同步。在兩個處於渾沌運動的系統，利用雙

向偶合方式使兩系統達成渾沌同步化。同時計算次李雅普諾夫指數且應用其正、負號

來判斷渾沌同步化是否實現。研究發現當主要的次李雅普諾夫指數最後一次穿過零值

時，出現渾沌同步運動。此外，亦研究渾沌同步化所需的最短時間。
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Chaos Synchronization of Mutual Coupled Gyros  

Hsien-Keng Chen,  Jia-Hroung Wu, Tsung-Nan Lin

Abstract

Synchronization of the two identical chaotic motions of symmetric gyros has been
studied. It has shown that one can make two identical chaotic systems to synchronize through
applying dual-way coupling. The sign of the sub-Lyapunov exponents is also applied as a
criterion for this. It has been found that when the last time of the major sub-Lyapunov
exponent transverses the zero then chaos synchronization occurs. In addition,
synchronization of chaos has been also shown by phase trajectory. Besides, the
synchronization time is also examined.
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1. Introduction
The symmetric gyro can be used to

modal a variety of physical systems,

ranging from a child's top to a modern

gyroscopic navigational instrument. In

1996, Ge and his coworkers [1, 2]

conducted a detailed study evaluating the

nonlinear behavior of a symmetric heavy

gyroscope mounted on a vibrating base. In

their study, the chaotic motion of the

system with linear damping was

investigated. Very recently the motion of a

symmetric gyro which is subjected to a

harmonic vertical base excitation has been

studied by Tong et al. [3], with particular

emphasis on its nonlinear dynamic

behavior without taking into account the

damping effect. Their study has shown that

a symmetric gyro exactly exhibited chaotic

motion. 

The possibility of two or more

chaotic systems oscillating in a coherent

and synchronized way is not an obvious

one. One of the main features often

associated with the definition of chaotic

behavior is the sensitive dependent on

initial conditions. Then one may conclude

that synchronization is not feasible in

chaotic systems because it is not possible in

real systems either to reproduce exactly

identical initial conditions or exact

specification of system parameters for two

similar systems. But, the recent suggestion

of Pecora et al. [4] that it is possible to

synchronize even chaotic systems by

introducing appropriate coupling between

them has revolutionized our understanding.

They have shown that if a response (slave)

system responses to a chaotic signal from

the drive system, under some conditions the

signal in the response would converge to

the corresponding signals in the drive

(master) system. Such a possibility is

known as synchronization of chaotic

systems. Synchronization can be thought of

as a form of control chaos. Since their

work, Synchronization of chaotic

dynamical systems has been intensively

studied [5]. Very recently, Chen and Lin [6]

have shown that two identical chaotic

symmetric gyros can synchronize through

applying one-way coupling. In this paper, it
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will be studied that if two identical chaotic

symmetric gyros can synchronize through

applying dual-way coupling or not. The

sign of the sub-Lyapunov exponent will be

applied to diagnose synchronization of

chaos occurs or not. Synchronization of

chaos will be also shown by phase

trajectory. Further, the synchronization time

will be also examined.

2. Equations of Motion
The geometry of the problem under

consideration is depicted in Fig. 1. The

motion of a symmetric gyro mounted on a

vibrating base can be described by Euler's

angles ( (nutation), ( (precession), and (

(spin). By Lagrangian approach that the

Lagrangian has the expression

external excitation disturbance, and  is the

frequency of the external excitation

disturbance. It is not difficult to see that

coordinates φ and Ψ are cyclic, the

momentum integrals are

where ωz is the spin velocity of the

gyro. The dissipation function is also given

by

where C is a positive constant.

Applying Routh's procedure and the above

relation, the equation governing the gyro is

given by

The normalized equations in

convenient first order form are

where I1 and I3 are the polar and

equatorial moments of inertia of the

symmetric gyro, respectively, Mg is the

gravity force,  is the amplitude of the
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The detailed explanation for the

equations of motion the reader is referred to

reference [1, 2].

3. Chaos Synchronization by
Dual-Way Coupling

Chaos synchronization is an important

problem in the nonlinear science. Chaos

synchronization problem has the following

feature: The trajectories of a slave

(response) system must tracks the

trajectories of the master (drive) system in

spite of both master and slave system being

different. In this section, we will study that

if two identical chaotic symmetric gyros

can synchronize through applying dual-way

coupling or not. The state equations of two

identical gyros with dual-way coupling

element are represented as

drive(master):

where εis the coupling parameter,

F(x2, y2)= sin(x2-y2) and G(x2, y2)=εsin(y2-

x2) are the coupling functions. It is nature,

when the one-way coupling (as function G

is not presented) applying one knows that

the behavior of the slave system is

dependent on the behavior of the master

system, but the second one is not

influenced by the behavior of the first.

Clearly, the behaviors of the slave system

and master system are interacted owing to

dual-way coupling. In fact, synchronization

of chaos can be still regarded as a special

tracking problem, with the desired

trajectory not being a constant. In addition,

as the dual-way coupling is applied, it is

known that desired strange attractor could
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be changed. The dual-way coupling is also

a control law. The above coupling terms

possess the same character, when the

synchronization occurs (xi(t)=yi(t), i=1,2)

then them vanish. 

The system exhibits chaotic

behavior under the parameter condition：

α2=100, β=1, c=0.5, ω= 2, f=34.5. Fig.

2-3 show phase trajectory and Poincaré

map for f=34.5. An interesting strange

attractor, which configuration looks like

"S", is presented. The detailed analysis and

discussion the reader is referred to

reference [1, 2].

In order to study synchronization of

chaos, the influence of the coupling

strength on the two identical systems

behavior will be examined by observing

how the coupling parameter εchanges

with the constant values of the remaining

parameters (, (=1, c=0.5, = 2, f=34.5). The

initial conditions of master system and

slave system are also given as (1.0, 0.2) and

(0.1, 0.02), respectively. In the present

study, the equations (8) and (9) will be

integrated numerically against ε([0,1.0],

while the incremental value of εis 0.01 in

order to obtain the Lyapunov exponents.

For the whole system (equations (8) and

(9)), the Lyapunov exponents are presented

as (λ1,λ2,λ3,λ4,0). Whereλ3 and λ4

are called sub-Lyapunov exponents. As

function G is not given, the master system

exhibits chaotic motion under the

parameter condition: α2=100, β=1,

c=0.5, ω= 2, f=34.5. In this situation, the

Lyapunov exponentsλ1 and λ2 are

always presented as (λ1>0,λ2<0) for any

coupling strength ε. When the dual-way

coupling introduced, the Lyapunov

exponentsλ1 and λ2 will be changed

depending on the coupling strength ε. For

the whole system the Lyapunov exponent

types can be classified as: (I)(+，–，+，

–，0), hyperchaos, (II) (+，–，–，

–，0), chaos, and (III) (–，–，–，

–，0), regular motion. The sub-Lyapunov

exponent types are presented as (+, -) and (-

, -). The Lyapunov exponents of the whole

system against εare shown in Fig. 4. 

We know that the master system and

the slave system will synchronize only if



the sub-Lyapunov exponents are all

negative. And the above theorem is a

necessary, but not sufficient condition for

synchronization. From above analysis, one

finds that only type (II) could perform

chaos synchronization.

Fig. 4 shows an interesting

phenomenon, the major sub-Lyapunov

exponent transverses zero many times in

certain interval of ε. It is obvious that the

detailed discussion is needed. It is found

that the sub-Lyapunov exponents are all

negative at ε [0.15, 0.19] andε0.24.

While the Lyapunov exponent type is (–，

–，–，–，0) atε [0.16, 0.18], the

master and slave system exhibit regular

motion. The master system and slave

system are calculated by numerical

integration against ε=0.15, 019ε0.24,

while the incremental value of εis 0.01.

The fascinating behavior of the slave

system occurs. The attractor of the slave

system is changed into another

configuration forε=0.15 andε=0.19,

respectively. It is obvious that

synchronization will not present. Finally, if

ε0.24, the phase portraits of master and

slave are synchronized. Fig. 5(a) depicts

the trajectory of (x2-y2), for ε=0.30. Fig.

5(b) shows the relation of x2 and y2 as

synchronization occurs. Fig. 5(c) and (d)

display the trajectories of master system

and slave system, respectively. On the

contrary, ifε=0.2, the two identical

systems will not synchronize as shown in

Fig. 6. 

From the previous analysis, we can

conclude that the coupling strength ε

plays a major role to make two identical

chaotic systems synchronizing. Besides, it

is found that when the last time of the

major sub-Lyapunov exponent transverses

the zero then chaos synchronization occurs.

4. Synchronization Time

In the previous study, the dual-way

coupling has been successfully applied to

perform chaos synchronization in the two

identical systems. Next, we address the

following question: when can one make a

chaotic trajectory of one system to

synchronize with a chaotic trajectory of the

other system with dual-way coupling. For

互耦陀螺之渾沌同步：陳琜庚、吳家宏、林宗南 163



164 修平學報　第九期　民國九十三年九月

this purpose, we definite an error function

When the value of function E(t) is less

than 10-6, then the two identical systems

synchronizing are archived. At that time t,

which is called "synchronization time".

According the above rigorous definition, if

ε=0.30 the synchronization time is 383.6

seconds.

5. Conclusions
Synchronization of the two identical

chaotic motions of symmetric gyros has

been studied. It has shown that one can

make two identical chaotic systems to

synchronize through applying dual-way

coupling. The sign of the sub-Lyapunov

exponent has been applied to diagnose

synchronization of chaos occurs or not. It

has been also found that when the last time

of the major sub-Lyapunov exponent

transverses the zero then chaos

synchronization occurs. In addition,

synchronization of chaos has been also

shown by phase trajectory. Besides, the

synchronization time is also examined. 
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Fig. 2-3 The Phase trajectory and the Poincaré map of the system for specific values set 

(
2
=100, =1 c1=0.5, c2=0.05, =2, f=34.5). 

Fig. 4 The Liapunov exponents of mutual coupled gyros versus .
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 5 (a)The trajectory of (x2-y2), (b) The relation of x2 and y2, (c) The trajectories of the 

master system, (d) The trajectories of the slave system (Synchronized motion for

=0.3).
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Fig. 6 (a) The trajectory of (x2-y2), (b) The relation of x2 and y2, (c) The trajectories of

the master system, (d) The trajectories of the slave system (Unsynchronized

motion for =0.2).


